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Starting point

Notations

• q prime

• g a generator of (Fq)∗

• X a (secret) integer less than q

• Y = gX mod q.

Quote
“Computing X from Y, on the other hand can be computed much more difficult and,
for certain carefully chosen values of q, requires on the order of q1/2 operations [...]”

Diffie and Hellman 1976

Indeed, the best known algorithm in 1976 was Baby step giant step.

The DLP was as hard for (Fq)∗ as for any other group (e.g. elliptic curves).
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The L notation

For any integer Q = en, LQ(α, c) = exp
(
cnα(log n)1−α

)
.

When c is not specified we write LQ(α).

Example

I LQ(1, 12) = exp
(
1
2n
)

=
√

exp(n) =
√
Q (exponential algorithm).

I LQ(0, 3) = exp (3 log n) = n3 (cubic algorithm)

I LQ(1/2, 1) = exp
(√

n
√

log n
)
≈ exp

(√
n
)

= e
√
n (sub-exponential algorithm).

Exercice

• LLx(α)(β) = Lx(αβ).

• L(α)L(β) = L(max(α, β))1+o(1).
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History

I One year after the introduction of DLP in cryptography, a subexponential
algorithm was proposed by Adleman (complexity L(1/2)).

I In 1978 when RSA was proposed, it was known that the continued fractions
method of factorization was very fast. In early 80s Dixon and Pomerance proved
that there are algorithms of complexity L(1/2).

I Ideas traveled from factorization to discrete logarithm in finite fields and
vice-versa.

Chronology

Dates below give the publication year of the first algorithm of each class. For discrete
logarithm, one uses different algorithms depending on the characteristic of the field,
which have distinct publication dates.

complexity factorization
DLP

in finite fields

LQ(1/2) 1970a 1979− 1994

LQ(1/3) 1989 1984− 2006

LQ(ε) −− 2013−
acomplexity unknown until 1980 (after the introduction of RSA)
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Algorithms families
Let us use red for factoring, blue for DLP and violet for both.

early

sieve algorithms

created in 1975-1994

of complexity L(1/2)

factorization+DLP

elliptic curve method

created in 1985

of complexity L(1/2)

factorization

Rho + BSGS

created in 1971-1978

of complexity
√
N = L(1)

factorization+DLP

advanced

sieve algorithms

created in 1984-2006

of complexity L(1/3)

factorization+DLP

quasi-polynomial

created in 2013-

of complexity L(ε)

DLP in fields Fqk

with small q.
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Plan of the lecture

I Introduction

I Index Calculus

I Quadratic sieve (QS/MPQS)

I Sieving
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Smoothness

Integers

• definition An integer is B-smooth if all its prime factors are less than B .

• computation One finds small prime divisors with ECM, which
• is probabilistic;
• relies on a conjecture of analytic number theory;
• given an integer x , it finds all its factors less than B in average time
LB(1/2,

√
2)1+o(1) log(x)4. In practice, the dependency in log x is quadratic.

Polynomials

• definition A polynomial in Fq[t] is m-smooth if all its irreducible factors have
degree less than or equal to m.

• computation One tests if a polynomial P(t) is m-smooth by one of the two
methods below:
• by factoring it (correctness is trivial, probabilistic, slow);
• by taking gcd with P ′(t) · (tqm − t) (prove it!, deterministic, faster).

It is not known how to define smooth elements on an elliptic curves

with a fast smoothness test.
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DLP: an example (1)

Parameters

• p = 12101

• g = 7 is a generator of G = (Z/pZ)∗

• ` = 11 is a prime factor of (p − 1) = #G

• B = 10 is the smoothness bound

• factor base 2, 3, 5, 7

Finding relations among logs

75 mod p = 4706 = 2 · 13 · 181

The last relation gives:
7 = 3 log7 3 + 2 log7 5

25 = 8 log7 2 + 1 log7 3

42 = 6 log7 2 + 2 log7 5.
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DLP: an example (2)

Thanks to the Pohlig-Hellman reduction

we do the linear algebra computations modulo ` = 11.

Linear algebra computations

We have to find the unknown log7 2, log7 3 and lg7 5 in the equation0 3 2

8 1 0

6 0 2

 ·
log7 2

log7 3

log7 5

 ≡
 7

25

42

 mod 11.

Conjecture

The matrix obtained by the technique above has maximal rank.

We can drop all conjectures by modifying the algorithm, but this variant is fast and,
even if the matrix has smaller rank we can find logs.

Solution
We solve to obtain log7 2 ≡ 0 mod 11; log7 3 ≡ 3 mod 11 and log7 5 ≡ 10 mod 11.
For this small example we can also use Pollard’s rho method and obtain that

log7 3 = 8869 ≡ 3 mod 11.
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DLP: an example (3)

At this point, we know discrete logarithms of the factor base and of smooth numbers:

log7(10) = log7 2 + log7 5 ≡ 10 mod 11.

Smoothing by randomization

Consider a residue modulo p which is not 10-smooth, e.g. h = 151. We take random
exponents a and test is (g ah) mod p is B-smooth.

The discrete logarithms of the two members are equal:

5 + log7(151) = 2 log7 2 + 7 log7 3.

We find log7(151) ≡ 3 mod 11.

Remark
This part of the computations is independent of the relation collection and linear
algebra stages. It is called individual logarithm stage.
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Index Calculus

Input:
p prime, g generator of (Z/pZ)∗, ` prime divisor of (p − 1)

h integer less than p
Output: logg h mod `

1: Set B to its optimal value

2: Make the list F of the primes less than B (factor base) . Initialization
3: repeat
4: a←Random([1,p-1])
5: if (g a mod p) is B-smooth then
6: relations=relations

⋃
{a} . Relations collection

7: end if
8: until #relations ≥ #F
9: Construct the matrix M = (ma,q), a in relations, q ∈ F as follows

ma,q = valq (g a mod p) . . Linear algebra

10: Solve the linear system Mx = (a)a in relations.
11: repeat
12: b ←Random([1,p-1])
13: until (g bh mod p) is B-smooth
14: Factor (g bh mod p) =

∏
qeii . Individual logarithm

15: return x =
∑

ei logg(qi)− b
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Plan of the lecture

I Introduction

I Index Calculus

I Quadratic sieve (QS/MPQS)

I Sieving
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Fermat’s idea
Idea

Fermat (XVII century) computed solutions of the equation

X 2 ≡ Y 2 mod N . (1)

It became a classical idea for factoring, e.g. mechanical machines were built in France
in early XX century to solve the above equation.a

a“Discovery of a lost factoring machine”, Shallit, Wiliams, Morain

Lemma

If N = pq, Equation (1) has four solutions Y for each X 6= 0.

Proof.

Using the identity X 2 − Y 2 = (X − Y )(X + Y ) we have Y ≡ ±X mod p and
Y ≡ ±X mod q. We call X ′ the unique integer less than N which satisfies the system

Y ≡ −X mod p

Y ≡ X mod q.

Then the solutions of Equation (1) are Y = X , Y = −X , Y = X ′ and Y = −X ′.

50% of the solutions, i.e. X ′ and −X ′, give gcd(X − Y ,N) = p or q.

R. Barbulescu — Overview - Algebraic Number Theory in Cryptography 12 / 21



Fermat’s idea
Idea

Fermat (XVII century) computed solutions of the equation

X 2 ≡ Y 2 mod N . (1)

It became a classical idea for factoring, e.g. mechanical machines were built in France
in early XX century to solve the above equation.a

a“Discovery of a lost factoring machine”, Shallit, Wiliams, Morain

Lemma

If N = pq, Equation (1) has four solutions Y for each X 6= 0.

Proof.

Using the identity X 2 − Y 2 = (X − Y )(X + Y ) we have Y ≡ ±X mod p and
Y ≡ ±X mod q. We call X ′ the unique integer less than N which satisfies the system

Y ≡ −X mod p

Y ≡ X mod q.

Then the solutions of Equation (1) are Y = X , Y = −X , Y = X ′ and Y = −X ′.

50% of the solutions, i.e. X ′ and −X ′, give gcd(X − Y ,N) = p or q.

R. Barbulescu — Overview - Algebraic Number Theory in Cryptography 12 / 21



Factoring: an example (1)

Not squares but smooth numbers

Let us factor N = 2041. We search integers a such that a2 −N is a square. In order to
keep a2−N small, we take a approximately equal to

√
N : 46, 47, . . .. Squares seem to

be rare! Kraitchik (1922) proposed to collect integers which are 10-smooth.

We call factor base the set of primes less than 10: 2, 3, 5 and 7.

Collecting relations

462 − N = 75 = 3 · 52
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Factoring: an example (1)

Not squares but smooth numbers

Let us factor N = 2041. We search integers a such that a2 −N is a square. In order to
keep a2−N small, we take a approximately equal to

√
N : 46, 47, . . .. Squares seem to

be rare! Kraitchik (1922) proposed to collect integers which are 10-smooth.

We call factor base the set of primes less than 10: 2, 3, 5 and 7.

Collecting relations

462 − N = 75 = 3 · 52

472 − N = 168 = 23 · 3 · 7
482 − N = 263 = 2631

492 − N = 360 = 23 · 32 · 5
502 − N = 459 = 33 · 17

512 − N = 560 = 24 · 5 · 7
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Factoring: an example (2)

Combining relations

With the previous relations we have, for all non-negative integers u46, u47, u49, u51:(
462u46472u47492u49512u51

)
≡ 23u47+3u49+4u513u46+u47+2u4952u46+u49+u517u47+u51 mod N

Linear algebra stage

We find u46, u47, u49, u51 in Z/2Z satisfying

u47 + 3u49 + 4u51 ≡ 0 mod 2

u46 + u47 + 2u49 ≡ 0 mod 2

2u46 + u49 + u51 ≡ 0 mod 2

u47 + u51 ≡ 0 mod 2.

We obtain u46 = u47 = u49 = u51 = 1.
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Factoring: an example (3)

Computing X

We multiply the left sides of all the relations to find

X = 46u4647u4749u4951u51 mod N

= 46 · 47 · 49 · 51 mod N

= 311.

Computing Y

We multiply the right sides of all the relations to find

Y =
(
23u47+3u49+4u513u46+u47+2u4952u46+u49+u517u47+u51

)1/2
mod N

= 25 · 32 · 52 · 7 mod N

= 1416.

Euclid gives the factorization!

Since X 6≡ ±Y mod N , we succeed. We compute

gcd(Y − X ,N) = gcd(1416− 311, 2041) = 13.

The factorization is 2041 = 13 · 157.
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Quadratic sieve
Input: integer N = pq for two primes p and q
Output: p and q
1: Set B to its optimal value

2: Make the list F of the primes less than B (factor base) . Initialization

3: a← b
√
Nc

4: repeata← a + 1
5: if (a2 − N) is B-smooth then
6: relations=relations

⋃
{a} . Relations collection

7: end if
8: until #relations ≥ #F
9: Construct the matrix M = (ma,q), a in relations, q ∈ F as follows

ma,q = valq
(
a2 − N

)
. . Linear algebra

10: Solve the linear system transpose(x)M ≡ 0 mod 2.
11: Compute X =

∏
a in relations a

xa.
12: Compute Y =

∏
q∈F q

(
∑

a xa)/2.
13: Compute g = gcd(X − Y ,N) . Square root
14: if g 6= 1 or N then
15: return p = g , q = N/g
16: else
17: Find more relations and do the linear algebra again.
18: end if
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Plan of the lecture

I Introduction

I Index Calculus

I Quadratic sieve (QS/MPQS)

I Sieving
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The idea of sieving

What we need

In QS, we collect integers a = d
√
Ne+ x , where x is a small integer, such that a2 − N

is B-smooth.

We need to find the smooth values of Q(x), when Q(x) =
(
d
√
Ne+ x

)2
− N .

Eratosthenes sieve

Given a polynomial Q(x) ∈ Z[x ], one can compute the values x in an interval [E1,E2]
such that Q(x) is prime. One marks with a line every value of x which is divisible by
two, then by three and so on. The values of x which have no marks correspond to
prime values of Q.

Numbers which have many marks are smooth.
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Sieving: an example
Problem

Find values a in the interval [3, 7] such that Q(a) = a2 + 1 is prime, respectively
6-smooth.

Table of sieving

a 3 4 5 6 7

ticks

log(a2 + 1) log 10 log 17 log 26 log 37 log 50

Computations

Consider primes less than 6 and their powers less than max{Q(a) | a ∈ [2, 7]}:
• p = 2, solutions of a2 + 1 ≡ 0 mod 2 are {1};
• q = 22, solutions of a2 + 1 ≡ 0 mod 4 are ∅;

• p = 3, solutions of a2 + 1 ≡ 0 mod 3 are ∅;

• p = 5, solutions of a2 + 1 ≡ 0 mod 5 are {2, 3};
• p = 52, solutions of a2 + 1 ≡ 0 mod 25 are {7, 18}

Conclusion

The prime values of Q are Q(4) = 17 and Q(6) = 37.
The 6-smooth values of Q are Q(3) = 10 and Q(7) = 50.
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Computations

Consider primes less than 6 and their powers less than max{Q(a) | a ∈ [2, 7]}:
• p = 2, solutions of a2 + 1 ≡ 0 mod 2 are {1};
• q = 22, solutions of a2 + 1 ≡ 0 mod 4 are ∅;

• p = 3, solutions of a2 + 1 ≡ 0 mod 3 are ∅;

• p = 5, solutions of a2 + 1 ≡ 0 mod 5 are {2, 3};
• p = 52, solutions of a2 + 1 ≡ 0 mod 25 are {7, 18}

Conclusion

The prime values of Q are Q(4) = 17 and Q(6) = 37.
The 6-smooth values of Q are Q(3) = 10 and Q(7) = 50.
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Algorithm for sieving
Algorithm

Input: a monic polynomial Q(x) in Z[x ] and parameters B , E1, E2;
Output: all the integers x ∈ [E1,E2] for which Q(x) is B-smooth.
1: Make a list (pk , r) of prime powers pk ≤ max{|Q(x)|, x ∈ [E1,E2]}, with p < B ,

and integers 0 ≤ r < pk such that Q(r) ≡ 0 mod pk

2: Define an array indexed by x ∈ [E1,E2] and initialize it with log2 |Q(x)|
3: for all (pk , r) considered above do
4: for x in [E1,E2] and x ≡ r mod pk do
5: Subtract log2 p from the entry of index x ;
6: end for
7: end for
8: Collect the indices x where the array is close to 0 (numerical errors).

Cofactorization
In practice we sieve on primes smaller than a bound fbb < B and we collect indices x
whose value is smaller than a threshold. Then we test smoothness with ECM on the
survivals in a step called cofactorization. In the literature, the smoothness bound B is
called lpb, “large prime bound”, to distinguish from fbb, “factor base bound”.

Exercice
What is the condition on fbb and lpb such that ECM is not needed, i.e., we know that
there is only one large prime.
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