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Overview

1 Rings

2 Field Extensions

3 Modules and Free Abelian Groups

This lecture is based on the textbooks:

Stewart, Tall - Algebraic Number Theory and Fermat’s Last Theorem

Marcus - Number Fields

Ömer Küçüksakallı (METU) Algebraic Background September 1, 2016 2 / 33



Rings
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Rings

A ring is one of the fundamental algebraic structures.

It consists of a set equipped with two binary operations that
generalize the arithmetic operations of addition and multiplication.

We use the notation (R,+, ·) to indicate a ring.

(R,+) is an additive group: identity, inverse, associativity,
commutativity.
Multiplication is associative: (a · b) · c = a · (b · c)
Distribution law holds: a · (b + c) = a · b + a · c

Unless explicitly stated to the contrary, the term ring means a
commutative ring with multiplicative identity 1R .

Example

The number systems Z,Q,R and C are examples of rings under the usual
addition and multiplication.
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Two different rings with the same additive structure

The fundamental difference between an additive group and a ring is
the additional structure given by the multiplication.

For example consider the two classical example of rings:

C with usual addition and multiplication of complex numbers,
R× R with componentwise addition and multiplication.

Note that both rings have the same underlying additive structure.

How can we justify that these two algebraic objects are different as
rings?
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Homomorphisms

A ring homomorphism f : R → S is a map between two rings
(R,+, ·) and (S ,⊕,�) which respect the addition and multiplication
on both rings. More precisely,

f (1R) = 1S ,
f (a + b) = f (a)⊕ f (b)
f (a · b) = f (a)� f (b)

for all a, b ∈ R.

Two rings are the “same” if there exists a a bijective ring
homomorphism between them.

Such a map is called an isomorphism of rings and such rings are
called isomorphic rings.
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An example

Example

The rings (C,+, ·) and (R× R,+, ·) are not isomorphic.

Proof.

Assume there exists an isomorphism f : C→ R× R.

Set i =
√
−1, an element of C. Then

f (i)4 = f (i4) = f (1C) = 1R×R.

1R×R = (1, 1) and we have f (i)4 = (1, 1).

There can be no f (i) ∈ R× R with this property. A contradiction

An isomorphism of rings respects the properties of those rings. For
example if one ring has no zero divisors then so is the other one.
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Ideals

Groups have special subsets which are called subgroups.

Any ring R has an underlying additive group structure and it has
subgroups with respect to this structure.

We introduce ideals which need special attention. An ideal is a
nonempty subset I of R such that

I is an additive subgroup of R, and
r · i ∈ I for every r ∈ R and i ∈ I .

Example

Ideals of Z are of the form aZ = {ak : k ∈ Z}.

There are only two ideals of Q. Namely I1 = {0} and I2 = Q.

Z is a an additive subgroup of Q but it is not an ideal of Q.
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Quotient rings

If N is a normal subgroup of a group G , then one can introduce the
quotient group G/N on which there is a natural well-defined group
operation. This construction can be generalized to rings!

The elements of the quotient ring R/I are cosets

r + I = {r + i : i ∈ I}.

The addition and multiplication are defined respectively by

(r + I )⊕ (s + I ) = (r + s) + I , and
(r + I )� (s + I ) = (r · s) + I .

The second operation, namely the multiplication, is well-defined
because r · i ∈ I for every r ∈ R and i ∈ I .
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The first isomorphism theorem

Let f : R → S be a homomorphism. The kernel and the image are
defined as follows:

Ker(f ) = {r ∈ R : f (r) = 0S},
Im(f ) = {f (r) : r ∈ R}.

The kernel is an ideal of R.

The image is a subring of S .

The first isomorphism theorem states that

R/Ker(f ) ∼= Im(f ).
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Generating ideals

The ideal generated by a set X of R is the smallest ideal of R
containing X . Such an ideal is denoted by 〈X 〉.
If there exist a finite subset X = {x1, x2, . . . , xn} of R such that
I = 〈X 〉, then we say that I is finitely generated. We write

〈X 〉 = 〈x1, x2, . . . , xn〉

If I = 〈x〉 for some x ∈ R, then we say that I is the principal ideal
generated by x .

Example

If m, n ∈ Z, then 〈m, n〉 = 〈gcd(m, n)〉.
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Principal ideal domains

An integral domain is a ring with no zero divisors. A principal ideal
domain, or PID, is an integral domain in which every ideal is principal.

Let S be a ring with a subring R and a subset X . The notation R[X ]
indicates the smallest subring of S containing both R and X .

Example

The following are examples of PIDs.

Z,Z[
√
−1],Z[

√
2],Z

[√
−19+1

2

]
.

A ring of the form Z[
√
d ] where d ∈ Z is not always a PID. A

classical example is Z[
√
−5] with a non-principal ideal 〈2, 1 +

√
−5〉.

Why does not gcd(2, 1 +
√
−5) work?
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Polynomial rings

A field is a ring in which every non-zero element has a multiplicative
inverse.

Let F be a field. The polynomial ring F[x ] is a principal ideal domain.
This can be justified by using the Euclidean algorithm.

The polynomial ring Z[x ] is not a principal ideal domain. An example
of a non-principal ideal is I = 〈x , 2〉.
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Unique factorization domains

A unique factorization domain, or UFD, is an integral domain in which
every non-zero non-unit element can be written as a product of prime
elements (or irreducible elements), uniquely up to order and units.

Any PID is a UFD. If R is a UFD, then so is the polynomial ring R[x ].

The ring Z[
√
−5 ] is not UFD because there are distinct factorizations

such as
2 · 3 = (1 +

√
−5)(1−

√
−5).

(Alternatively Z[
√
−5 ] is a Dedekind domain that is not a PID. If R

is a Dedekind domain, then PID ⇔ UFD.)

The ring Z[x ] is an example of a UFD which is not a PID.
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Factorization of elements

The “factorization” in the ring Z[ζp] plays an important role while
studying the solutions of the Diophantine equation xp + yp = zp.

There are two distinct properties that can be used to serve as a
definition:

Definition

A non-zero non-unit element π ∈ R is called prime if

π|ab for some a, b ∈ R =⇒ π|a or π|b.

Definition

A non-zero non-unit element π ∈ R is called irreducible if

π = ab for some a, b ∈ R =⇒ a is a unit or b is a unit.

Every prime element is irreducible. However the converse is not true.
For example 2 is irreducible in Z[

√
−5] but it is not prime.
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Prime and maximal ideals

A proper ideal P of a ring R is prime if it satisfies

ab ∈ P for some a, b ∈ R =⇒ a ∈ P or b ∈ P.

A proper ideal M of a ring R is maximal if it is maximal (with respect
to set inclusion) amongst all proper ideals.

R/I is a field if and only if I is maximal.

R/I is an integral domain if and only if I is prime.

(Maximal =⇒ Prime) because (Field =⇒ Integral Domain).
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Field Extensions

Ömer Küçüksakallı (METU) Algebraic Background September 1, 2016 17 / 33



Field extensions

Field extensions often arise in a slightly more general context as a
monomorphism σ : K → L where K and L are fields.

It is customary to identify K with its image σ(K ), which is a subfield
of L. We denote such an extension by L/K .

If L/K is a field extension then L has a natural structure as a vector
space over K .

The dimension of this vector space is called the degree of the
extension and written as [L : K ].

The degree is multiplicative in towers.

Theorem

If M ⊇ L ⊇ K are fields, then [M : K ] = [M : L][L : K ].
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Algebraic and transcendental elements

Given an extension L/K and an element α ∈ L,

if there exists a non-zero polynomial P(x) ∈ K [x ] such that P(α) = 0,
then we say that α is algebraic,
if not, then we say that α is transcendental.

If α is algebraic over K , then there exists a unique monic polynomial
satisfied by α whose degree is minimal. We write

minα,K ∈ K [x ].

Example

If α = exp(2πi/8), then minα,Q = x4 + 1 ∈ Q[x ].

Example

If β = exp(2πi/5) + exp(−2πi/5), then minβ,Q = x2 + x − 1 ∈ Q[x ].
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Transcendental extensions

If X is a subset of L, we write K (X ) for the smallest subfield of L
containing K and X .

If α ∈ L is transcendental over K , then Q(α) 6= 0 for all non-zero
polynomials Q ∈ K [x ]. In this case,

K (α) =

{
P(α)

Q(α)
: P,Q 6= 0 ∈ K [x ]

}
.

One can consider an indeterminate x , then the field of rational
functions is

K (x) =

{
P

Q
: P,Q 6= 0 ∈ K [x ]

}
.

We have [K (x) : K ] =∞.
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Algebraic extensions

Theorem

If α ∈ L is algebraic over K, then [K (α) : K ] <∞. In this case,

[K (α) : K ] = deg(minα,K ), and

K (α) = K [α].

Proof.

Set n = deg(minα,K ). In order to see that [K (α) : K ] = n, we shall
show that K (α) is a vector space over K with basis {1, α, . . . , αn−1}.
The inclusion K [α] ⊆ K (α) is trivial. To see the converse, pick an
element P(α)/Q(α) ∈ K (α). We must have gcd(Q,minα,K ) = 1 in
the Euclidean ring K [x ]. Then we use the existence of f , g ∈ K [x ]
such that f · Q + g ·minα,K = 1.
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Number fields

If K/Q is a finite extension then K is called a number field.

A number field is an algebraic extension of Q.

We have something stronger.

Theorem (Primitive element theorem)

If K is a number field, then K = Q(α) for some complex number α.

Not all algebraic extensions are simple! (It may not be possible to
generate them with a single element.)

For example;

any infinite algebraic extension is not simple,
there exists a finite inseparable extension that is not simple.
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Finite fields

Another important family of algebraic field extensions is given by
finite fields.

The field Fp: Let p be a prime element in Z. Then p = 〈p〉 is a prime
ideal of Z. The quotient ring Z/p is a finite integral domain. Thus it
is a field with p elements.

Theorem

For each q, a power of a prime p ∈ Z, there exist a unique field Fq with
precisely q elements up to isomorphism.

The construction of such a field with q = pd can be achieved by the
quotient ring Fp[x ]/〈f (x)〉 where f (x) ∈ Fp[x ] is an irreducible
polynomial of degree d .

Non-zero elements of Fq form a cyclic group of order q − 1 under the
multiplication.
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Modules and Free Abelian Groups
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Modules

Let R be a ring. An R-module consists of an abelian group M and an
operation · : R ×M → M such that for all r , s ∈ R and x , y ∈ M:

1 r · (x + y) = r · x + r · y ,
2 (r + s) · x = r · x + s · x ,
3 (rs) · x = r · (s · x),
4 1R · x = x .

If R is a field, then an R-module is the same thing as a vector space
over the field R. Thus an R-module can be considered as a
generalization of a vector space.

Because of the lack of division in R, many properties of vector spaces
may not hold for R-modules.

For example, an R-module may not have a basis.
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Submodules and homomorphisms

Suppose M is an R-module and N is a subgroup of M. Then N is an
R-submodule if,

r ∈ R and n ∈ N =⇒ r · n ∈ N.

If M and N are R-modules, then a map f : M → N is an R-module
homomorphism if, for any m, n ∈ M and r , s ∈ R,

f (r ·m + s · n) = r · f (m) + s · f (n).

A bijective module homomorphism is an isomorphism of modules, and
the two modules are called isomorphic.

The isomorphism theorems familiar from vector spaces are also valid
for R-modules.
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Types of modules

Finitely generated: An R-module M is finitely generated if there
exist finitely many elements x1, . . . , xn ∈ M such that every element
of M is a linear combination of those elements with coefficients from
the ring R.

Free: A free R-module is a module that has a basis, or equivalently,
one that is isomorphic to a direct sum of copies of the ring R. These
are the modules that behave very much like vector spaces.

Torsion-Free: A torsion-free module is a module over a ring such
that 0 is the only element annihilated by a regular element (non
zero-divisor) of the ring.
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Abelian groups

Any abelian group M can be made into a Z-module by defining

n ·m = m + m + . . .+ m︸ ︷︷ ︸
n times

for any n ∈ Z and m ∈ M.

Example

As a Z-module, Q is

not finitely generated,

not free,

torsion-free,
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Elliptic curves as modules

Given an abelian group A, let End(A) be the set of endomorphisms
f : A→ A (i.e. surjective group homomorphisms).

It is easy to verify that (End(E ),+, ◦) is a ring with identity (possibly
noncommutative). Here the multiplication is given by the
composition of functions.

The abelian group A is naturally an End(A)-module with f · a defined
to be f (a).

Example

Any elliptic curve E has an abelian group structure. Thus any elliptic
curve E is naturally an End(E )-module.
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Free abelian groups

If G is finitely generated as a Z-module, so that there exist
g1, . . . , gn ∈ G such that every g ∈ G is a sum

g = m1g1 + . . .+ mngn (mi ∈ Z)

then G is called a finitely generated abelian group.

Generalizing the notion of linear independence in a vector space, we
say that elements g1, . . . , gn in an abelian group G are linearly
independent (over Z) if any equation

m1g1 + . . .+ mngn = 0 (mi ∈ Z)

implies m1 = m2 = . . . = mn = 0.

A linearly independent set which generates G is called a basis.

If {g1, . . . , gn} is a basis, then every g ∈ G has a unique
representation g =

∑n
i=1 migi .
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Change of basis

An abelian group with a basis of n elements is called a free abelian
group of rank n.

Theorem

Let G be a free abelian group of rank n with basis {x1, . . . , xn}. Suppose
that [aij ] is an n × n matrix with integer entries. Then the elements

yi =
n∑

j=1

aijxj (i = 1, . . . , n)

form a basis of G if and only if det([aij ]) = ±1.

For example, a standard basis for Z2 is e1 = (1, 0) and e2 = (0, 1). If
we consider y1 = 3e1 + 2e2 and y2 = 2e1 + e2, then {y1, y2} is a

Z-basis for Z2 because det([ 3 2
2 1 ]) = −1. Note that [ 3 2

2 1 ]
−1

=
[−1 2

2 −3

]
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Subgroups

We will need the following facts in order analyze the ring of integers

Theorem

Every subgroup of a free abelian group of rank n is also a free group of
rank less than or equal to n.

Theorem

Let G be a free abelian group of rank n, and H a subgroup of G. Then
G/H is finite if and only if the ranks of G and H are equal. If this is the
case and if G and H have Z-bases {x1, . . . , xn} and {y1, . . . , yn},
respectively, with yi =

∑n
j=1 aijxj , then

|G/H| = | det([aij ])|.
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The End
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