Algebraic Background

Ömer Küçüksakallı

Middle East Technical University

September 1, 2016 ECC 2016 – Summer School

Overview

- Rings
- 2 Field Extensions
- 3 Modules and Free Abelian Groups

This lecture is based on the textbooks:

- Stewart, Tall Algebraic Number Theory and Fermat's Last Theorem
- Marcus Number Fields

Rings

Rings

- A ring is one of the fundamental algebraic structures.
- It consists of a set equipped with two binary operations that generalize the arithmetic operations of addition and multiplication.
- We use the notation $(R, +, \cdot)$ to indicate a ring.
 - (R,+) is an additive group: identity, inverse, associativity, commutativity.
 - Multiplication is associative: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - Distribution law holds: $a \cdot (b+c) = a \cdot b + a \cdot c$
- Unless explicitly stated to the contrary, the term ring means a commutative ring with multiplicative identity 1_R .

Example

The number systems $\mathbf{Z}, \mathbf{Q}, \mathbf{R}$ and \mathbf{C} are examples of rings under the usual addition and multiplication.

Two different rings with the same additive structure

- The fundamental difference between an additive group and a ring is the additional structure given by the multiplication.
- For example consider the two classical example of rings:
 - C with usual addition and multiplication of complex numbers,
 - ullet ${f R} imes {f R}$ with componentwise addition and multiplication.
- Note that both rings have the same underlying additive structure.
- How can we justify that these two algebraic objects are different as rings?

Homomorphisms

- A ring **homomorphism** $f: R \to S$ is a map between two rings $(R, +, \cdot)$ and (S, \oplus, \odot) which respect the addition and multiplication on both rings. More precisely,
 - $f(1_R) = 1_S$,
 - $f(a+b) = f(a) \oplus f(b)$
 - $f(a \cdot b) = f(a) \odot f(b)$

for all $a, b \in R$.

- Two rings are the "same" if there exists a a bijective ring homomorphism between them.
- Such a map is called an isomorphism of rings and such rings are called isomorphic rings.

An example

Example

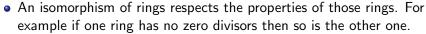
The rings $(C, +, \cdot)$ and $(R \times R, +, \cdot)$ are not isomorphic.

Proof.

- Assume there exists an isomorphism $f : \mathbf{C} \to \mathbf{R} \times \mathbf{R}$.
- Set $i = \sqrt{-1}$, an element of **C**. Then

$$f(i)^4 = f(i^4) = f(1_{\mathbf{C}}) = 1_{\mathbf{R} \times \mathbf{R}}.$$

- $1_{\mathbf{R}\times\mathbf{R}} = (1,1)$ and we have $f(i)^4 = (1,1)$.
- There can be no $f(i) \in \mathbf{R} \times \mathbf{R}$ with this property. A contradiction



Ideals

- Groups have special subsets which are called subgroups.
- Any ring R has an underlying additive group structure and it has subgroups with respect to this structure.
- We introduce ideals which need special attention. An ideal is a nonempty subset I of R such that
 - I is an additive subgroup of R, and
 - $r \cdot i \in I$ for every $r \in R$ and $i \in I$.

Example

- Ideals of **Z** are of the form a**Z** = { $ak : k \in$ **Z**}.
- There are only two ideals of \mathbf{Q} . Namely $I_1 = \{0\}$ and $I_2 = \mathbf{Q}$.
- Z is a an additive subgroup of Q but it is not an ideal of Q.

Quotient rings

- If N is a normal subgroup of a group G, then one can introduce the quotient group G/N on which there is a natural well-defined group operation. This construction can be generalized to rings!
- The elements of the quotient ring R/I are cosets

$$r+I=\{r+i:i\in I\}.$$

- The addition and multiplication are defined respectively by
 - $(r+1) \oplus (s+1) = (r+s)+1$, and
 - $(r+1) \odot (s+1) = (r \cdot s) + 1$.
- The second operation, namely the multiplication, is well-defined because $r \cdot i \in I$ for every $r \in R$ and $i \in I$.

The first isomorphism theorem

• Let $f: R \to S$ be a homomorphism. The kernel and the image are defined as follows:

$$Ker(f) = \{r \in R : f(r) = 0_S\},\$$

 $Im(f) = \{f(r) : r \in R\}.$

- The kernel is an ideal of R.
- The image is a subring of S.
- The first isomorphism theorem states that

$$R/\operatorname{Ker}(f) \cong \operatorname{Im}(f)$$
.

Generating ideals

- The ideal generated by a set X of R is the smallest ideal of R containing X. Such an ideal is denoted by $\langle X \rangle$.
- If there exist a finite subset $X = \{x_1, x_2, \dots, x_n\}$ of R such that $I = \langle X \rangle$, then we say that I is finitely generated. We write

$$\langle X \rangle = \langle x_1, x_2, \dots, x_n \rangle$$

• If $I = \langle x \rangle$ for some $x \in R$, then we say that I is the principal ideal generated by x.

Example

If $m, n \in \mathbf{Z}$, then $\langle m, n \rangle = \langle \gcd(m, n) \rangle$.

Principal ideal domains

- An integral domain is a ring with no zero divisors. A principal ideal domain, or PID, is an integral domain in which every ideal is principal.
- Let S be a ring with a subring R and a subset X. The notation R[X] indicates the smallest subring of S containing both R and X.

Example

The following are examples of PIDs.

- $\bullet \ \ \textbf{Z},\textbf{Z}[\sqrt{-1}],\textbf{Z}[\sqrt{2}],\textbf{Z}\left\lceil \frac{\sqrt{-19}+1}{2}\right\rceil.$
- A ring of the form $\mathbf{Z}[\sqrt{d}]$ where $d \in \mathbf{Z}$ is not always a PID. A classical example is $\mathbf{Z}[\sqrt{-5}]$ with a non-principal ideal $\langle 2, 1 + \sqrt{-5} \rangle$.
- Why does not $gcd(2, 1 + \sqrt{-5})$ work?

Polynomial rings

- A field is a ring in which every non-zero element has a multiplicative inverse.
- Let **F** be a field. The polynomial ring $\mathbf{F}[x]$ is a principal ideal domain. This can be justified by using the Euclidean algorithm.
- The polynomial ring $\mathbf{Z}[x]$ is not a principal ideal domain. An example of a non-principal ideal is $I = \langle x, 2 \rangle$.

Unique factorization domains

- A unique factorization domain, or UFD, is an integral domain in which every non-zero non-unit element can be written as a product of prime elements (or irreducible elements), uniquely up to order and units.
- Any PID is a UFD. If R is a UFD, then so is the polynomial ring R[x].
- The ring $\mathbf{Z}[\sqrt{-5}]$ is not UFD because there are distinct factorizations such as

$$2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$

- (Alternatively $\mathbf{Z}[\sqrt{-5}]$ is a Dedekind domain that is not a PID. If R is a Dedekind domain, then PID \Leftrightarrow UFD.)
- The ring $\mathbf{Z}[x]$ is an example of a UFD which is not a PID.

Factorization of elements

- The "factorization" in the ring $\mathbf{Z}[\zeta_p]$ plays an important role while studying the solutions of the Diophantine equation $x^p + y^p = z^p$.
- There are two distinct properties that can be used to serve as a definition:

Definition

A non-zero non-unit element $\pi \in R$ is called prime if

 $\pi|ab$ for some $a,b\in R \Longrightarrow \pi|a$ or $\pi|b$.

Definition

A non-zero non-unit element $\pi \in R$ is called irreducible if

 $\pi = ab$ for some $a, b \in R \Longrightarrow a$ is a unit or b is a unit.

• Every prime element is irreducible. However the converse is not true. For example 2 is irreducible in $\mathbf{Z}[\sqrt{-5}]$ but it is not prime.

Prime and maximal ideals

• A proper ideal P of a ring R is prime if it satisfies

$$ab \in P$$
 for some $a, b \in R \Longrightarrow a \in P$ or $b \in P$.

- A proper ideal M of a ring R is maximal if it is maximal (with respect to set inclusion) amongst all proper ideals.
- R/I is a field if and only if I is maximal.
- R/I is an integral domain if and only if I is prime.
- (Maximal \Longrightarrow Prime) because (Field \Longrightarrow Integral Domain).

Field Extensions

Field extensions

- Field extensions often arise in a slightly more general context as a monomorphism $\sigma: K \to L$ where K and L are fields.
- It is customary to identify K with its image $\sigma(K)$, which is a subfield of L. We denote such an extension by L/K.
- If L/K is a field extension then L has a natural structure as a vector space over K.
- The dimension of this vector space is called the degree of the extension and written as [L: K].
- The degree is multiplicative in towers.

Theorem

If $M \supseteq L \supseteq K$ are fields, then [M : K] = [M : L][L : K].

Algebraic and transcendental elements

- Given an extension L/K and an element $\alpha \in L$,
 - if there exists a non-zero polynomial $P(x) \in K[x]$ such that $P(\alpha) = 0$, then we say that α is algebraic,
 - ullet if not, then we say that lpha is transcendental.
- If α is algebraic over K, then there exists a unique monic polynomial satisfied by α whose degree is minimal. We write

$$\min_{\alpha,K} \in K[x].$$

Example

If $\alpha = \exp(2\pi i/8)$, then $\min_{\alpha, \mathbf{Q}} = x^4 + 1 \in \mathbf{Q}[x]$.

Example

If $\beta = \exp(2\pi i/5) + \exp(-2\pi i/5)$, then $\min_{\beta, \mathbf{Q}} = x^2 + x - 1 \in \mathbf{Q}[x]$.

Transcendental extensions

- If X is a subset of L, we write K(X) for the smallest subfield of L containing K and X.
- If $\alpha \in L$ is transcendental over K, then $Q(\alpha) \neq 0$ for all non-zero polynomials $Q \in K[x]$. In this case,

$$K(\alpha) = \left\{ \frac{P(\alpha)}{Q(\alpha)} : P, Q \neq 0 \in K[x] \right\}.$$

 One can consider an indeterminate x, then the field of rational functions is

$$K(x) = \left\{ \frac{P}{Q} : P, Q \neq 0 \in K[x] \right\}.$$

• We have $[K(x):K]=\infty$.

Algebraic extensions

Theorem

If $\alpha \in L$ is algebraic over K, then $[K(\alpha) : K] < \infty$. In this case,

- $[K(\alpha):K] = \deg(\min_{\alpha,K})$, and
- $K(\alpha) = K[\alpha]$.

Proof.

- Set $n = \deg(\min_{\alpha, K})$. In order to see that $[K(\alpha) : K] = n$, we shall show that $K(\alpha)$ is a vector space over K with basis $\{1, \alpha, \dots, \alpha^{n-1}\}$.
- The inclusion $K[\alpha] \subseteq K(\alpha)$ is trivial. To see the converse, pick an element $P(\alpha)/Q(\alpha) \in K(\alpha)$. We must have $\gcd(Q, \min_{\alpha, K}) = 1$ in the Euclidean ring K[x]. Then we use the existence of $f, g \in K[x]$ such that $f \cdot Q + g \cdot \min_{\alpha, K} = 1$.

Number fields

- If K/\mathbf{Q} is a finite extension then K is called a number field.
- A number field is an algebraic extension of **Q**.
- We have something stronger.

Theorem (Primitive element theorem)

If K is a number field, then $K = \mathbf{Q}(\alpha)$ for some complex number α .

- Not all algebraic extensions are simple! (It may not be possible to generate them with a single element.)
- For example;
 - any infinite algebraic extension is not simple,
 - there exists a finite inseparable extension that is not simple.

Finite fields

- Another important family of algebraic field extensions is given by finite fields.
- The field \mathbf{F}_p : Let p be a prime element in \mathbf{Z} . Then $\mathfrak{p}=\langle p\rangle$ is a prime ideal of \mathbf{Z} . The quotient ring \mathbf{Z}/\mathfrak{p} is a finite integral domain. Thus it is a field with p elements.

Theorem

For each q, a power of a prime $p \in \mathbf{Z}$, there exist a unique field \mathbf{F}_q with precisely q elements up to isomorphism.

- The construction of such a field with $q=p^d$ can be achieved by the quotient ring $\mathbf{F}_p[x]/\langle f(x)\rangle$ where $f(x)\in F_p[x]$ is an irreducible polynomial of degree d.
- Non-zero elements of \mathbf{F}_q form a cyclic group of order q-1 under the multiplication.

Modules and Free Abelian Groups

Modules

- Let R be a ring. An R-module consists of an abelian group M and an operation $\cdot : R \times M \to M$ such that for all $r, s \in R$ and $x, y \in M$:

 - $(r+s) \cdot x = r \cdot x + s \cdot x,$
 - $(rs) \cdot x = r \cdot (s \cdot x),$
 - $1_R \cdot x = x.$
- If R is a field, then an R-module is the same thing as a vector space over the field R. Thus an R-module can be considered as a generalization of a vector space.
- Because of the lack of division in R, many properties of vector spaces may not hold for R-modules.
- For example, an R-module may not have a basis.

Submodules and homomorphisms

• Suppose M is an R-module and N is a subgroup of M. Then N is an R-submodule if,

$$r \in R$$
 and $n \in N \Longrightarrow r \cdot n \in N$.

• If M and N are R-modules, then a map $f: M \to N$ is an R-module homomorphism if, for any $m, n \in M$ and $r, s \in R$,

$$f(r \cdot m + s \cdot n) = r \cdot f(m) + s \cdot f(n).$$

- A bijective module homomorphism is an isomorphism of modules, and the two modules are called isomorphic.
- The isomorphism theorems familiar from vector spaces are also valid for *R*-modules.

Types of modules

- **Finitely generated:** An R-module M is finitely generated if there exist finitely many elements $x_1, \ldots, x_n \in M$ such that every element of M is a linear combination of those elements with coefficients from the ring R.
- Free: A free *R*-module is a module that has a basis, or equivalently, one that is isomorphic to a direct sum of copies of the ring *R*. These are the modules that behave very much like vector spaces.
- Torsion-Free: A torsion-free module is a module over a ring such that 0 is the only element annihilated by a regular element (non zero-divisor) of the ring.

Abelian groups

ullet Any abelian group M can be made into a ${f Z}$ -module by defining

$$n \cdot m = \underbrace{m + m + \ldots + m}_{n \text{ times}}$$

for any $n \in \mathbf{Z}$ and $m \in M$.

Example

As a **Z**-module, **Q** is

- not finitely generated,
- not free,
- torsion-free,

Elliptic curves as modules

- Given an abelian group A, let End(A) be the set of endomorphisms $f: A \rightarrow A$ (i.e. surjective group homomorphisms).
- It is easy to verify that $(\operatorname{End}(E), +, \circ)$ is a ring with identity (possibly noncommutative). Here the multiplication is given by the composition of functions.
- The abelian group A is naturally an $\operatorname{End}(A)$ -module with $f \cdot a$ defined to be f(a).

Example

Any elliptic curve E has an abelian group structure. Thus any elliptic curve E is naturally an End(E)-module.

Free abelian groups

• If G is finitely generated as a **Z**-module, so that there exist $g_1, \ldots, g_n \in G$ such that every $g \in G$ is a sum

$$g = m_1g_1 + \ldots + m_ng_n \quad (m_i \in \mathbf{Z})$$

then G is called a finitely generated abelian group.

• Generalizing the notion of linear independence in a vector space, we say that elements g_1, \ldots, g_n in an abelian group G are linearly independent (over Z) if any equation

$$m_1g_1+\ldots+m_ng_n=0 \quad (m_i\in \mathbf{Z})$$

implies $m_1 = m_2 = ... = m_n = 0$.

- ullet A linearly independent set which generates G is called a basis.
- If $\{g_1, \ldots, g_n\}$ is a basis, then every $g \in G$ has a unique representation $g = \sum_{i=1}^n m_i g_i$.

Change of basis

 An abelian group with a basis of n elements is called a free abelian group of rank n.

Theorem

Let G be a free abelian group of rank n with basis $\{x_1, \ldots, x_n\}$. Suppose that $[a_{ij}]$ is an $n \times n$ matrix with integer entries. Then the elements

$$y_i = \sum_{j=1}^n a_{ij} x_j \quad (i = 1, \dots, n)$$

form a basis of G if and only if $det([a_{ij}]) = \pm 1$.

• For example, a standard basis for \mathbf{Z}^2 is $e_1=(1,0)$ and $e_2=(0,1)$. If we consider $y_1=3e1+2e2$ and $y_2=2e1+e2$, then $\{y_1,y_2\}$ is a \mathbf{Z} -basis for \mathbf{Z}^2 because $\det(\left[\begin{smallmatrix} 3 & 2 \\ 2 & 1 \end{smallmatrix}\right])=-1$. Note that $\left[\begin{smallmatrix} 3 & 2 \\ 2 & 1 \end{smallmatrix}\right]^{-1}=\left[\begin{smallmatrix} -1 & 2 \\ 2 & -3 \end{smallmatrix}\right]$

Subgroups

• We will need the following facts in order analyze the ring of integers

Theorem

Every subgroup of a free abelian group of rank n is also a free group of rank less than or equal to n.

Theorem

Let G be a free abelian group of rank n, and H a subgroup of G. Then G/H is finite if and only if the ranks of G and H are equal. If this is the case and if G and H have \mathbf{Z} -bases $\{x_1,\ldots,x_n\}$ and $\{y_1,\ldots,y_n\}$, respectively, with $y_i = \sum_{j=1}^n a_{ij}x_j$, then

$$|G/H| = |\det([a_{ij}])|.$$

The End