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Introduction

Pairing-Based Cryptography (PBC) enables many elegant
solutions to cryptographic problems :

O l|dentity-based encryption
@ Short signatures
© Non-interactive authenticated key agreement

Pairing computation is the most expensive operation in
PBC.

Important : Make it faster !
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Pairings : General definition

(G1,4) (Ga,+) and (Gs, x) commutative groups of order n.
A pairing is a map
€n Gl X Gz = G3
such that
@ e, is bilinear :

Q e,,(51 + 52, T) == e,,(51, T)e,,(Sg, T)
° en(sy Ty + T2) = en(Sa Tl)en(sa T2)

@ e, is non degenerate.

o e, efficiently computable
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Pairings : Realisation on elliptic curves

o E, elliptic curve on Fg, identity element O.

e r, a large divisor (closed to) of $E(FF)
@ Two linearly independent points P € G; and Q € G3 of order r where
o G1 = E (Fq) [rlN Ker(ry — [1]) = E(F,)[
o Gy = E (Fq) [r]n Ker(rq — [q]) = E(F,)[r] (Balasubramanian and
Koblitz)
where k is called the embedding degree (smallest integer such that

rl(q* - 1)) |
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Tate and Ate Pairings on elliptic curves

o Take two linearly independent points of order r : P € Gy = E(F)[r]
and Qe G2 = E(Fqk)[r].
@ Let fy, g be the function with divisor

Div (fng) = m(R) — m(O) (1)

we have the pairings :
@ The reduced Tate Pairing is the map

e: GixGy — pu

o1 (2)
(P,Q) = fp(Q)~
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Tate and Ate Pairings on elliptic curves

@ Take two linearly independent points of order r : P € Gy = E(Fg)[r]
and @ € Gy = E(F)[r].
o Let 7y, g be the function with divisor

Div (fm,r) = m(R) — m(O) (1)

we have the pairings :
@ The reduced Tate Pairing is the map

e: GixGy — p
' ' qkfl (2)

(P,Q) = fp(Q)

@ The ate pairing is the map

€ep GzXGl — Mr,
U (3)

(Q,P) = fro(P) ",
where T =t —1;/log(T) ~ log(r)/2
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Pairings : Tools for the computation

The computation of a pairing requires two main operations :

@ The computation of the function f,, g
qk—l
@ The final exponentiation f_ .
For the computation of the function f, g, let f; g be the function such that
Div(fir) = i(R) — ([i]R) — (i — 1)(O), then
@ For i = r we have Div (f,,p) = r(P) — r(O)
°
firjp = fip - f.p - hyp e (4)

where hg s is the function that define the group law on the elliptic curve
Div(hr,s) = (R) +(5) — (5 + R) — (O)

. ¢ . . . .
@ For Weiertrass curves, hg,s = v:_f; quotient of line functions ( Huff, Hessian,..)

@ For Edward curves, hg s is the quotient of quadratic functions !

We always have Hg s = ©
University of Bamenda, Cameroon lzmir, 07/09/16 7 /28
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Pairings : the main computation tool

Miller's algorithm and Tate pairing computation, Mil'86

Input : P € E(Fg)[r], Q € E(F)[r],
r=(1,rm-1,....1r, rn)2-
Output : The Tate pairing of P and Q : en(P, Q)

l.dof+1and R+ P
2. fori=m—-1a0

3. em(P,Q)«+ 7

2.1 do f < f?- Hg r(Q) and R « 2R
2.2 ifri =1 then f(—f-HRJD(Q) and R+~ R+ P
qk—l

lzmir, 07/09/16
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Pairings : the main computation tool

Miller's algorithm and ate pairing computation, Mil'86

Input : P € E(Fg)[r], Q € E(F)[r],
T = (1, Tm_1,.... T1, To)g.
Output : The ate pairing of P and Q : en(Q, P)

lLdof+1land R+ Q
2. fori=m—-1a0
2.1 do f < f?- Hg g(P) and R «- 2R

qk—l

3. em(Q,P)« 7

22 if T; =1 then f < f - Hg q(P) and R+ R+ Q

lzmir, 07/09/16
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P € E(F,)[r], Q@ € E(Fg)[rl,

r = (1, 'm—1,....11, r0)2.

Output : The Tate pairing of P and Q : en(P, Q)
l.dof«+1land R+~ P

2.fori=m—1to0

21 dof+ f? Hrgr(Q)=u(Q) and R + 2R
22 ifri=1 thenf <+ f -u(Q)and R+ R+ P

gk—1

3em(P, Q) «+ 7

One can avoid the denominator of Hr s = ¥
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P € E(F,)[r], Q@ € E(Fg)[rl,

r = (1, 'm—1,....11, r0)2.

Output : The Tate pairing of P and Q : en(P, Q)
l.dof+land R+ P

2. fori=m—1to0

2.1 do f < f%2-u(Q) (projective)and R < 2R

22 ifri=1 then f « f-u(Q)(projective)and R <+ R+ P

gk—1

3em(P, Q) «+ 7

Avoid inversions turning to projective coordinates
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P € E(Fq)[r], Q € E(Fg)[r],
r=(1,rm-1,....1, 1)z
Output : The Tate pairing of P and Q : en(P, Q)

l.dof+1land R+ P

2. fori=m—1to0

21 do f <« f2.-u(Q) and R + 2R

22 ifri=1 then f+ f-u(Q)and R+~ R+ P

qk—l

3em(P, Q) <+ f 7

Improve the arithmetic in the extension F i :
k = 2'3) is nice since ...
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P € E(F,)[r], Q@ € E(Fg)[rl,

r = (1, 'm—1,....11, r0)2.

Output : The Tate pairing of P and Q : en(P, Q)
l.dof«+1land R+~ P

2.fori=m—1to0

21 do f<+ f2-u(Q)and R+ 2R

2.2 ifri=1 (Unlikely) then f < f-u(Q) and R+ R+ P

gk—1

3em(P, Q) «+ 7

Choose a lower Hamming weight r
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P € E(Fq)[r], Q € E(Fg)[r],
r=(1,rm-1,....1, 10)32-
Output : The Tate pairing of P and Q : en(P, Q)

l.dof+land R+ P

2. fori=m—1to0

21 do f+ f2 - u(Q) and R+ 2R

22 ifri=1 then f+«+f-u(Q)and R+~ R+P

af'=1

3. em(P,Q)«

Split the final exponentiation : ”kr_l = [Zi(_pl):| : [(bkfp)]
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P € E(F,)[r], @ € E(F)[r],

r = (1,rm_1,....r1,r0)2

Output : The Tate pairing of P and Q : en(P, Q)
l.dof+<1land R+ P

2. fori=m—1to0

21 do

22 ifri=1 then f+«+f-u(Q)and R+~ R+P

k_
3 em(P,Q) « 7

Split the final exponentiation : pkr_l = [gi(_pl)} : [‘b“f”)]
Applied "vectorial addition chain method", Scott et al. Pairing 2009

v
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P € E(Fq)[r], Q € E(Fg)[r],
r=(1,rm-1,....1, 10)32-
Output : The Tate pairing of P and Q : en(P, Q)

lL.dof<«+1and R+ P

2.fori=m—11to0

2.1 do

22 ifri=1 then f+f -u(Q)and R+~ R+P

gk—1

3. em(P,Q) «+ 7

Split the final exponentiation : ”kr_l = [gi(_pl)} : [(bkfp)]
" attices-based method" by Fuentes et al. SAC 2011
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Efficiency depends also on the shape of the curve and its

arithmetic

@ Pairings on Weierstrass model y? = x3 + ax + b
o Costello, Hisil et al.(Pairing 2009)
o Costello, Lange et al.(PKC 2010)

@ Pairings on Edwards curves ax® + y? = 1 + dx?y?
o Sarkar,Laxman et al. (Pairing 2008)

e lonica and Joux (Indocrypt 2008)
o Aréne, Lange et al. (Journal of Number theory, 2011)
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Efficiency depends also on the shape of the curve and its

arithmetic

@ Pairings on the Huff model by Joye, Tibouchi et al.(2010) :
aX(Y? - Z%) = bY(X? - Z?)
@ Pairings on the Selmer model by Zhang, Wang et al.(ISPEC
2011) :ax® + by® =d
© Pairings on the Hessian model by Gu, Gu et al. (ICISC 2010) :
X3+ Y34+ 7% =3dXYZ
Q Pairings on the Jacobi model : E; : y? = dx* +20x% + 1 by
o Wang, Wang et al.(CJE 2011)
e Fouotsa and Duquesne. Pairing 2012

e Fouotsa, Duquesne, El Mrabet.( Journal of Mathematical Cryptology,
2014)
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Pairing-Friendly Curves

Definition

An elliptic curve E is said pairing-friendly if :
© k is small (less than 50)
Qr>\q

Pairing-friendly curves are rare!!! but can be obtained by polynomial
parameterisations
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Pairing-Friendly Curves

Polynomial parameterisations

We are looking for a curve E such that :

0r|qk—1

( Emmanuel Fouotsa ) University of Bamenda, Cameroon |zmir, 07/09/16 12 / 28



Pairing-Friendly Curves

Polynomial parameterisations

We are looking for a curve E such that :

Qrlg--1
Q@ r|#£E
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Pairing-Friendly Curves

Polynomial parameterisations

We are looking for a curve E such that :
Q r| g~ —1 implies (MNT) that r | x(q)
@ rlAE
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Pairing-Friendly Curves

Polynomial parameterisations

We are looking for a curve E such that :

Q r| g~ —1 implies (MNT) that r | x(q)
@ r |# E if furthermore r | ¢i(q) then (BLS) r | @i(t — 1)
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Pairing-Friendly Curves

Polynomial parameterisations

We are looking for a curve E such that :

© r| g~ —1 implies (MNT) that r | ¢x(q)
@ r |# E if furthermore r | pk(q) then (BLS) r | ¢k(t — 1)

So to find a pairing friendly curve, fix a small k and find r(x), t(x) and
q(x) such that r(x) | gx(t(x) —1) and r(x) | g(x)* —1
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Pairing-Friendly Curves

Polynomial parameterisations of Barreto-Naehrig (BN) curves

k=12

p(x) = 36x* +36x3 + 24x2 + 6x + 1
r(x) = 36x* + 36x3 + 18x% + 6x + 1
t(x) =6x> +1

O Ideal situation at the 128-bit security level with p = ’,‘;g((’:)) =1

@ curve of the form y?2 =x3 + b
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2- Faster ate pairing on Selmer Curves
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The Selmer Curves

@ Given by the affine equation ax® + by® = ¢ with abc # 0
@ Named by lan Connell in Elliptic curve handbook, 1999
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The Selmer Curves

e Given by the affine equation ax® + by3 = ¢ with abc # 0
@ Named by lan Connell in Elliptic curve handbook, 1999

e Can be transformed to a simpler form x3 + y3 = d
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The Selmer Curves

Given by the affine equation ax3 + by = ¢ with abc # 0
Named by lan Connell in Elliptic curve handbook, 1999

Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sy : x® + y* = d over F, is birationally equivalent
to the Weierstrass curve Wy : v? = u® — 43242, (lan 1999)
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The Selmer Curves

Given by the affine equation ax® + by® = ¢ with abc # 0
Named by lan Connell in Elliptic curve handbook, 1999

Can be transformed to a simpler form x> + y3 = d

The Selmer curve Sy : x® + y* = d over F, is birationally equivalent
to the Weierstrass curve Wy : v? = u® — 432d?, (lan 1999)

o Selmer curves are elliptic curves with discriminant A = —2'23%d* and
the j-invariant is 0.
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The Selmer Curves

Given by the affine equation ax3 + by = ¢ with abc # 0
Named by lan Connell in Elliptic curve handbook, 1999

Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sy : x3 + y* = d over F, is birationally equivalent

to the Weierstrass curve Wy : v? = u® — 43242, (lan 1999)

@ Selmer curves are elliptic curves with discriminant A = —2123%¢* and
the j-invariant is 0.

e Can be regarded as a particular case of the generalized Hessian curves

x3 4+ y3 + e = fxy which also has good properties for cryptographic

applications :
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The Selmer Curves

Given by the affine equation ax3 + by = ¢ with abc # 0
Named by lan Connell in Elliptic curve handbook, 1999
Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sy : x® + y* = d over F, is birationally equivalent
to the Weierstrass curve Wy : v? = u® — 43242, (lan 1999)

Selmer curves are elliptic curves with discriminant A = —2123%°¢* and
the j-invariant is 0.

Can be regarded as a particular case of the generalized Hessian curves
x3 4+ y3 + e = fxy which also has good properties for cryptographic
applications :

Resistance to side channel attacks (Unified formulas) : (Joye and
Quisquater, CHES 2001)
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The Selmer Curves

Given by the affine equation ax3 + by = ¢ with abc # 0
Named by lan Connell in Elliptic curve handbook, 1999
Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sy : x® + y* = d over F, is birationally equivalent
to the Weierstrass curve Wy : v? = u® — 43242, (lan 1999)

Selmer curves are elliptic curves with discriminant A = —2123%°¢* and
the j-invariant is 0.

Can be regarded as a particular case of the generalized Hessian curves
x3 4+ y3 + e = fxy which also has good properties for cryptographic
applications :

Some standard curves can be transformed to Hessian curves : (Smart,
CHES 2001)
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The Selmer Curves

Given by the affine equation ax3 + by = ¢ with abc # 0
Named by lan Connell in Elliptic curve handbook, 1999
Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sy : x3 + y* = d over F, is birationally equivalent
to the Weierstrass curve Wy : v2 = 13 — 432d°2, (lan 1999)

Selmer curves are elliptic curves with discriminant A = —2123%¢* and
the j-invariant is 0.

Can be regarded as a particular case of the generalized Hessian curves
x3 + y3 + e = fxy which also has good properties for cryptographic
applications :

Point operation can be implemented in a highly parallel way (40%

performance improvement over Weiertrass curves) : (Smart, CHES
2001)
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The Selmer Curves

Given by the affine equation ax3 + by = ¢ with abc # 0
Named by lan Connell in Elliptic curve handbook, 1999
Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sy : x® + y* = d over F, is birationally equivalent
to the Weierstrass curve Wy : v? = u® — 43242, (lan 1999)

Selmer curves are elliptic curves with discriminant A = —2123%°¢* and
the j-invariant is 0.

Can be regarded as a particular case of the generalized Hessian curves
x3 4+ y3 + e = fxy which also has good properties for cryptographic
applications :

Fast formulas for the computation of the Tate pairing on Selmer
curves ( Zhang, Wang, Wang, Ye, ISPEC 2011)
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point operation on Selmer curves : Wang et al. 2011

(X1 )+ (Xo: Yo o) =(X3: Y3 Z3)
Xs = XY —Xo2Y?
Ys = Vi1 XZ — Yoo X?
Zy = XiN1Z3 — XoYoZ?
Cost : 12M
2X1:Y1:Z1) = (X3: Y3 : Z3)
X3 = —Y1(2X13—|—Y13)
Y; = Xi(X§+2YP)
Z3 = Zl(X13_Y13)

Cost : BM+2S
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Ate Pairing on Selmer curve : choice of Q

Let £ : y? = x3 + b and its twist E' : y? = x"3 + b/w® with b = —4324d°.
The maps

E — Sd

—
36d — y'w? 36d + y'w®
2 3
(leyl) — (X/w 7y/w ) — ( 6x’w2 ) 6X/OJ2

enable to consider pointsin Goas Q = (S — Tw: S+ Tw: V)in
projective coordinates where Fo« = I /2(w) with w in Fg,
§=36d, T =y'w? V =6xw? €F .
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Ate pairing on Selmer Curves : Addition of points

(Sl—le:Sl—l—le:V1)+(52—T2w:52+T2w:Vz):(53—T3w:53+T3w:V3)

S3= (V1S — Va51)(515 — 2T Tzwz) + (1S T3 — VLS, le)wz
Ts= (iTa = VaTi)(TiTaw? —25:15) + VAS3 Ty — VoSi T (5)
Vi= SiVe—SWVi)(SiVe+SVi)+ (ViTe — Vo T1)(ViTe + VaTh)w?

2(51 — T]_(:J . 51 + T]_L/J . V]_) = (53 — T3w . 53 —|— T3w . V3)

53 = —851 waz
4
Ts= Tiw?—6SIT2 3%

(6)
V3: (—6V1512T1 —2V1T13w2)

( Emmanuel Fouotsa )
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Ate pairing on Selmer Curves : Miller function and

denominator elimination

Addition step :

cxxp + Ccyyp +Cz h(P)
hra(P) = - !

The denominator reduces to V3(xp + yp) — 253 € Forr2
The addition step then consists in computing :
Q hr @(P) = cxxp + cyyp + cz with
cx =Yoo — 21 Y2
cy = 21 X2 — X1

Cz = X1 Yz — Y1X2
@ The addition

(51—T1w:51+T1w:V1)+(52—T2w:52+T2w:Vz):(53—T3w:53+T3w:

Ts= (ViTa = VaT1)(ThiTaw? —25:15) + ViS2Ty — VoSETe
Vi= SiVo—SWVi)(SiVe+SVi)+ (ViTe — VaT1)(ViTe + VaTh)w?

(8)

{ Ss= (ViSa— Va51)(515: — 2T1 Taw?) + (ViS1 T2 — Vo 5y T2)w?

( Emmanuel Fouotsa )
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Ate Pairing on Selmer curves : cost of the combined addition Miller step

Operations Values Costs
A:=V15,B:= V25 A=V15.,B=V5 2me
C .= 5152, D = T1 T2 C= 5152,D = T1T2 2me
E:=WTF:=5T; E=WT, F=5T; 2me
G = V2T1,H1152T1 G:V2T1,H:52T1 2me
L:=A— B,M; := Dw? L= V1S — VoS;, My = Ty Tow? 1mc
M := L(C —2My) M = (V1Ss — V551)(5152 — 2T1 Taw?) | 1m.
Ny := EF, N; := GH Ny = Vi T2Sy, Np = VoS, T2 2me
N = (Nl—/\lz)w2 N:(V151T22—V252T12)W2 1mc
O=E-G O=WT—VoT; -
P:=M; —2C P=TiTaw? —255 -
Q:: OoP Q:(VlTQ—V2T1)(T1T2W2—25152) 1me
Ry := AH, R, := BF Ry = ViS2T1, Ry = VoS2To 2me
U =A+B, U =E+ G Ui = V1S + WSy, Ub = Vi To + VoTy -

U3 = OU2W2 U3 = (V1 T2 - V2 T1)(V1 Tz + Vg T1)W2 1me + 1mc

Table: Combined formulas for the point addition and Miller’s function
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Ate Pairing on Selmer curves : cost of the combined addition Miller step

Operations Values Costs
U4 = —LU1 U4 = —(V152 — V251)(V152 + V2$1) 1me
X3 =M+ N— -
(R+ R — R)w

Y3 =M+ N— -
(Q+ R+ Ro)w

Z3:=Us + Us -

cx :=—L— Ow Cx:—(V152—V251)—(V1T2_V2T1)W -

Cy = L — Ow Cy:(Vlsz—stl)—(Vsz—Vle)W -

cz :=2(F — H)w cz=2(51T2 — S2 T1)w -
hR’Q(P) = cxXp+ - gml + %ml = km
cyyp + ¢z

f:="f.hg q(P) 1my
Total cost : 16me + 3mc + kmy + 1my

Table: Combined formulas for the point addition and Miller’s function
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Ate pairing on Selmer Curves : Miller function and

denominator elimination

Doubling step :

cxxp +cyyp + ¢z h(P)
hrr(P) = - ’
r,r(P) Zs(xp + yp) — (Xa + Y3) h(P) 9)

The denominator reduces to (—6V1 57 Ty — 2Vi T3 w?)(xp + yp) +2T3 € F i)z
The doubling step then consists in the computation of :

@ hrr(P) = cxxp + cyyp + cz with
X = Cy = Y121 — X121,
cz = Xlz — Y12.
@ The doubling
251 — Thw:S1+ Tw: Vi) = (S35 — Tsw : S3 + Tsw : Vs)

53 = —851 Tf'w2

4
Ts= Tiw?—6S2T2-33% (10)
V3 = (*6\/15]%7—172\/17?&}2)

( Emmanuel Fouotsa )
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Ate Pairing on Selmer curves : cost of the combined

doubling Miller step

Operations Values Costs
A= Sf A= 512 1se
B := T2 B = le 1se
C :((Sl—‘r Tl)2 A—B)/2 C=5T 1se
D := A? D= X4 1se
E := Bw E=T2w? 1mc
T3 :=—12D + (3A— E)? 1se
S3:=8CE 1me
F:=WViTy 1me
V3 —( 2F(3A+ E))w 1me
Y3 =53+ Tzw -
Z3 = V3 -
hR,R(P) = (2C(yp — XP))W km1 + +1$e + 2mc
+(A+ Bw?)(xp + yp) — dV12

f:= f2.hR7R(P) 1s, + 1my
Total cost : 4me + 5se + 3mc + kmy + s + my

Table: Combined formulas for point doubling and Miller’ function
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Ate Pairing on Selmer curves : Parallelising the addition

Processor 1 Processor 2 Processor 3 Cost

m; = V1S my = V51 m3 =515 1me

myg = T1 T2 mgs = V1 Tz me = 51 Tz lme

my = VoTy mg =5T; mg = msmg 1me

mig = mzmg mi1 = mimg mi2 = mame 1me

ap = ms — my az = mg + my —— -

mi3 = aiaz —— —— 1me

c1 = maw? ¢ = (mg — myo)w? c3 = mppw? 1mc

a3 = mp — ma a4:c1—2m3 as = my + ma _—

my4 = az(m3 — 2c1) mis = aias mie = —asas 1me

X3 =mu+c Y3 =mu+ Z3 = c3 + mig ——
—(mis + mi1 — mi2)w | +(mis + mi1 — m2)w

cx = —az — aiw cy =az —aiw ¢z = 2(me — mg)w —

t1 = cxxp t2 = cyyp - §m1

fo'(t1+t2+Cz) —— Imy

Total cost : 6me + 1mc + gml + 1my

Table: Parallel execution of addition step in Miller's function
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Ate Pairing on Selmer curves : Parallelizing the doubling step

Processor 1 Processor 2 Processor 3 Cost

s1 = 512 S = T12 s3 = V12 1se

C1 = S2 W2 Co = S1 3 = dS3 lmc

sq = (S1+ T1)? S5 = vsviz 56:(3:%7c1w2)2 1se

ai :(54—51 —52)/2 az = —12s5 + sp m =WiT 1me
my = —8ajc1 m3 = (—2m1(3s1 + c1))w fi =f2? 1me + 1s;

X3 =my — aw Y3 = ma + axw Z3 = m3 ——

t1 = 2a1(yp — xp) t2 = (2 + s2w?)(xp + yp) - xm

f:fl -(t1W+t2763) —— —— 1mk

Total cost : 2me + 25¢ + 1mc + £my + 1s, + 1my

Table: Parallel execution of doubling step in Miller's function
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Ate Pairing on Selmer curves : Comparison with other work

In the Table we compare the costs for one iteration for Ate on the Selmer
curve Sy : x3 + y3 = d and on the Weierstrass curve W : y? = x3 + ¢2
([1] Costello, Lange, Naehrig, PKC 2010).

Pairings Doubling Addition Mixed Addition
Ate(Q, P) 4me + Tse + kmy+ 16me + 2se + kmy +1my | 12me + 2se + km
Weierstrass(a = 0)[1] 1my + 1sy +1my

ate(Q, P) 3me + 5se + kmyi+ 16me + kmy + 1my 14me + kmy + 1my
This work 1my + 1sy

ate(Q, P)(This work) | 2me + 2s. + §m1+ 6me + %ml + 1myg -
Parallelization 1my + 1sy

Table: Comparison of costs of one iteration for Ate pairing on Selmer and
Weierstrass Elliptic Curves
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Pairing friendly Selmer curves

o Let p be a prime number with p=1 mod 3. The E;: y> =x3+d? is
an ordinary elliptic curve.

@ We have the following isomorphism

(7 Ed — Wd
(x,y) — (—12x,—24/-3y)

and the curve W, : y? = x3 — 432 -4 - d? is birrationally equivalent to
the Selmer curve Sy : x3 + y* = 2d

@ The construction of pairing friendly curve of the form
Ey : y?> = x* + d? is given by the construction 6.6 of Freemann with
p=15
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Thanks for your attention !
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