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Introduction

Pairing-Based Cryptography (PBC) enables many elegant
solutions to cryptographic problems :

1 Identity-based encryption

2 Short signatures

3 Non-interactive authenticated key agreement

Pairing computation is the most expensive operation in
PBC.
Important : Make it faster !
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Pairings : General de�nition

(G1,+) (G2,+) and (G3,×) commutative groups of order n.
A pairing is a map

en : G1 ×G2 → G3

such that

en is bilinear :

en(S1 + S2,T ) = en(S1,T )en(S2,T )
en(S ,T1 + T2) = en(S ,T1)en(S ,T2)

en is non degenerate.

en e�ciently computable
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Pairings : Realisation on elliptic curves

Context

E , elliptic curve on Fq, identity element O.
r , a large divisor (closed to) of ]E (Fq)

Two linearly independent points P ∈ G1 and Q ∈ G2 of order r where

G1 = E
(
Fq

)
[r ]∩ Ker(πq − [1]) = E (Fq)[r ]

G2 = E
(
Fq

)
[r ]∩ Ker(πq − [q]) = E (Fqk )[r ] (Balasubramanian and

Koblitz)

where k is called the embedding degree (smallest integer such that
r |(qk − 1))
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Tate and Ate Pairings on elliptic curves

Take two linearly independent points of order r : P ∈ G1 = E (Fq)[r ]
and Q ∈ G2 = E (Fqk )[r ].

Let fm,R be the function with divisor

Div (fm,R) = m(R)−m(O) (1)

we have the pairings :

The reduced Tate Pairing is the map

er : G1 ×G2 → µr

(P,Q) 7→ fr ,P(Q)
qk−1

r

(2)
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Tate and Ate Pairings on elliptic curves

Take two linearly independent points of order r : P ∈ G1 = E (Fq)[r ]
and Q ∈ G2 = E (Fqk )[r ].

Let fm,R be the function with divisor

Div (fm,R) = m(R)−m(O) (1)

we have the pairings :

The reduced Tate Pairing is the map

er : G1 ×G2 → µr

(P,Q) 7→ fr ,P(Q)
qk−1

r

(2)

The ate pairing is the map

eA : G2 ×G1 → µr ,

(Q,P) 7→ fT ,Q(P)
qk−1

r ,
(3)

where T = t − 1; log(T ) ≈ log(r)/2
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Pairings : Tools for the computation

The computation of a pairing requires two main operations :

The computation of the function fm,R

The �nal exponentiation f
qk−1

r
m,R

For the computation of the function fm,R , let fi ,R be the function such that
Div(fi,R) = i(R)− ([i ]R)− (i − 1)(O), then

For i = r we have Div (fr,P) = r(P)− r(O)

fi+j,P = fi,P · fj,P · h[i ]P,[j]P (4)

where hR,S is the function that de�ne the group law on the elliptic curve
Div(hR,S) = (R) + (S)− (S + R)− (O)

Examples

For Weiertrass curves, hR,S =
`R,S

vR+S
quotient of line functions ( Hu�, Hessian,..)

For Edward curves, hR,S is the quotient of quadratic functions !

We always have HR,S = u
v

( Emmanuel Fouotsa ) University of Bamenda, Cameroon Izmir, 07/09/16 7 / 28



Pairings : the main computation tool

Miller's algorithm and Tate pairing computation, Mil'86

Input : P ∈ E (Fq)[r ], Q ∈ E (Fqk )[r ],
r = (1, rm−1, ....r1, r0)2.
Output : The Tate pairing of P and Q : em(P,Q)

1. do f ← 1 and R ← P
2. for i = m − 1 à 0
2.1 do f ← f 2 · HR,R(Q) and R ← 2R
2.2 if ri = 1 then f ← f · HR,P(Q) and R ← R + P

3. em(P,Q)← f
qk−1

r
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Pairings : the main computation tool

Miller's algorithm and ate pairing computation, Mil'86

Input : P ∈ E (Fq)[r ], Q ∈ E (Fqk )[r ],
T = (1,Tm−1, ....T1,T0)2.
Output : The ate pairing of P and Q : em(Q,P)

1. do f ← 1 and R ← Q
2. for i = m − 1 à 0
2.1 do f ← f 2 · HR,R(P) and R ← 2R
2.2 if Ti = 1 then f ← f · HR,Q(P) and R ← R + Q

3. em(Q,P)← f
qk−1

r
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P ∈ E (Fq)[r ], Q ∈ E (Fqk )[r ],
r = (1, rm−1, ....r1, r0)2.
Output : The Tate pairing of P and Q : em(P,Q)

1. do f ← 1 and R ← P
2. for i = m − 1 to 0
2.1 do f ← f 2 · HR,R(Q) = u(Q) and R ← 2R
2.2 if ri = 1 then f ← f · u(Q) and R ← R + P

3.em(P,Q)← f
qk−1

r

One can avoid the denominator of HR,S = u
v
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P ∈ E (Fq)[r ], Q ∈ E (Fqk )[r ],
r = (1, rm−1, ....r1, r0)2.
Output : The Tate pairing of P and Q : em(P,Q)

1. do f ← 1 and R ← P
2. for i = m − 1 to 0
2.1 do f ← f 2 · u(Q) (projective)and R ← 2R
2.2 if ri = 1 then f ← f · u(Q)(projective)and R ← R + P

3.em(P,Q)← f
qk−1

r

Avoid inversions turning to projective coordinates
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P ∈ E (Fq)[r ], Q ∈ E (Fqk )[r ],
r = (1, rm−1, ....r1, r0)2.
Output : The Tate pairing of P and Q : em(P,Q)

1. do f ← 1 and R ← P
2. for i = m − 1 to 0
2.1 do f ← f 2 · u(Q) and R ← 2R
2.2 if ri = 1 then f ← f · u(Q) and R ← R + P

3.em(P,Q)← f
qk−1

r

Improve the arithmetic in the extension Fqk :

k = 2i3j is nice since ...
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P ∈ E (Fq)[r ], Q ∈ E (Fqk )[r ],
r = (1, rm−1, ....r1, r0)2.
Output : The Tate pairing of P and Q : em(P,Q)

1. do f ← 1 and R ← P
2. for i = m − 1 to 0
2.1 do f ← f 2 · u(Q) and R ← 2R
2.2 if ri = 1 (Unlikely) then f ← f · u(Q) and R ← R + P

3.em(P,Q)← f
qk−1

r

Choose a lower Hamming weight r
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P ∈ E (Fq)[r ], Q ∈ E (Fqk )[r ],
r = (1, rm−1, ....r1, r0)2.
Output : The Tate pairing of P and Q : em(P,Q)

1. do f ← 1 and R ← P
2. for i = m − 1 to 0
2.1 do f ← f 2 · u(Q) and R ← 2R
2.2 if ri = 1 then f ← f · u(Q) and R ← R + P

3. em(P,Q)← f
qk−1

r

Split the �nal exponentiation : pk−1
r =

[
pk−1
φk (p)

]
·
[
φk (p)

r

]
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P ∈ E (Fq)[r ], Q ∈ E (Fqk )[r ],
r = (1, rm−1, ....r1, r0)2.
Output : The Tate pairing of P and Q : em(P,Q)

1. do f ← 1 and R ← P
2. for i = m − 1 to 0
2.1 do

2.2 if ri = 1 then f ← f · u(Q) and R ← R + P

3. em(P,Q)← f
qk−1

r

Split the �nal exponentiation : pk−1
r =

[
pk−1
φk (p)

]
·
[
φk (p)

r

]
Applied "vectorial addition chain method", Scott et al. Pairing 2009
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Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input : P ∈ E (Fq)[r ], Q ∈ E (Fqk )[r ],
r = (1, rm−1, ....r1, r0)2.
Output : The Tate pairing of P and Q : em(P,Q)

1. do f ← 1 and R ← P
2. for i = m − 1 to 0
2.1 do

2.2 if ri = 1 then f ← f · u(Q) and R ← R + P

3. em(P,Q)← f
qk−1

r

Split the �nal exponentiation : pk−1
r =

[
pk−1
φk (p)

]
·
[
φk (p)

r

]
"Lattices-based method" by Fuentes et al. SAC 2011
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E�ciency depends also on the shape of the curve and its
arithmetic

1 Pairings on Weierstrass model y2 = x3 + ax + b

Costello, Hisil et al.(Pairing 2009)
Costello, Lange et al.(PKC 2010)

2 Pairings on Edwards curves ax2 + y2 = 1 + dx2y2

Sarkar,Laxman et al. (Pairing 2008)
Ionica and Joux (Indocrypt 2008)
Arène, Lange et al. (Journal of Number theory, 2011)
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E�ciency depends also on the shape of the curve and its
arithmetic

1 Pairings on the Hu� model by Joye, Tibouchi et al.(2010) :
aX (Y 2 − Z 2) = bY (X 2 − Z 2)

2 Pairings on the Selmer model by Zhang, Wang et al.(ISPEC
2011) :ax3 + by3 = d

3 Pairings on the Hessian model by Gu, Gu et al. (ICISC 2010) :
X 3 + Y 3 + Z 3 = 3dXYZ

4 Pairings on the Jacobi model : Ed : y2 = dx4 + 2δx2 + 1 by

Wang, Wang et al.(CJE 2011)
Fouotsa and Duquesne. Pairing 2012
Fouotsa, Duquesne, El Mrabet.( Journal of Mathematical Cryptology,
2014)
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Pairing-Friendly Curves

De�nition

An elliptic curve E is said pairing-friendly if :

1 k is small (less than 50)

2 r >
√
q

Pairing-friendly curves are rare ! ! ! but can be obtained by polynomial
parameterisations
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Pairing-Friendly Curves

Polynomial parameterisations

We are looking for a curve E such that :

1 r | qk − 1
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Pairing-Friendly Curves

Polynomial parameterisations

We are looking for a curve E such that :

1 r | qk − 1

2 r |6= E
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Pairing-Friendly Curves

Polynomial parameterisations

We are looking for a curve E such that :

1 r | qk − 1 implies (MNT) that r | ϕk(q)

2 r |6= E
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Pairing-Friendly Curves

Polynomial parameterisations

We are looking for a curve E such that :

1 r | qk − 1 implies (MNT) that r | ϕk(q)

2 r |6= E if furthermore r | ϕk(q) then (BLS) r | ϕk(t − 1)
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Pairing-Friendly Curves

Polynomial parameterisations

We are looking for a curve E such that :

1 r | qk − 1 implies (MNT) that r | ϕk(q)

2 r |6= E if furthermore r | ϕk(q) then (BLS) r | ϕk(t − 1)

So to �nd a pairing friendly curve, �x a small k and �nd r(x), t(x) and
q(x) such that r(x) | ϕk(t(x)− 1) and r(x) | q(x)k − 1
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Pairing-Friendly Curves

Polynomial parameterisations of Barreto-Naehrig (BN) curves

k = 12
p(x) = 36x4 + 36x3 + 24x2 + 6x + 1
r(x) = 36x4 + 36x3 + 18x2 + 6x + 1
t(x) = 6x2 + 1

1 Ideal situation at the 128-bit security level with ρ = log(p)
log(r) = 1

2 curve of the form y2 = x3 + b
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2- Faster ate pairing on Selmer Curves
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The Selmer Curves

Given by the a�ne equation ax3 + by3 = c with abc 6= 0

Named by Ian Connell in Elliptic curve handbook, 1999
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The Selmer Curves

Given by the a�ne equation ax3 + by3 = c with abc 6= 0

Named by Ian Connell in Elliptic curve handbook, 1999

Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sd : x3 + y3 = d over Fq is birationally equivalent
to the Weierstrass curve Wd : v2 = u3 − 432d2, (Ian 1999)
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The Selmer Curves

Given by the a�ne equation ax3 + by3 = c with abc 6= 0

Named by Ian Connell in Elliptic curve handbook, 1999

Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sd : x3 + y3 = d over Fq is birationally equivalent
to the Weierstrass curve Wd : v2 = u3 − 432d2, (Ian 1999)

Selmer curves are elliptic curves with discriminant ∆ = −21239d4 and
the j-invariant is 0.
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The Selmer Curves

Given by the a�ne equation ax3 + by3 = c with abc 6= 0

Named by Ian Connell in Elliptic curve handbook, 1999

Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sd : x3 + y3 = d over Fq is birationally equivalent
to the Weierstrass curve Wd : v2 = u3 − 432d2, (Ian 1999)

Selmer curves are elliptic curves with discriminant ∆ = −21239d4 and
the j-invariant is 0.

Can be regarded as a particular case of the generalized Hessian curves
x3 + y3 + e = fxy which also has good properties for cryptographic
applications :
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The Selmer Curves

Given by the a�ne equation ax3 + by3 = c with abc 6= 0

Named by Ian Connell in Elliptic curve handbook, 1999

Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sd : x3 + y3 = d over Fq is birationally equivalent
to the Weierstrass curve Wd : v2 = u3 − 432d2, (Ian 1999)

Selmer curves are elliptic curves with discriminant ∆ = −21239d4 and
the j-invariant is 0.

Can be regarded as a particular case of the generalized Hessian curves
x3 + y3 + e = fxy which also has good properties for cryptographic
applications :

Resistance to side channel attacks (Uni�ed formulas) : (Joye and
Quisquater, CHES 2001)
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The Selmer Curves

Given by the a�ne equation ax3 + by3 = c with abc 6= 0

Named by Ian Connell in Elliptic curve handbook, 1999

Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sd : x3 + y3 = d over Fq is birationally equivalent
to the Weierstrass curve Wd : v2 = u3 − 432d2, (Ian 1999)

Selmer curves are elliptic curves with discriminant ∆ = −21239d4 and
the j-invariant is 0.

Can be regarded as a particular case of the generalized Hessian curves
x3 + y3 + e = fxy which also has good properties for cryptographic
applications :

Some standard curves can be transformed to Hessian curves : (Smart,
CHES 2001)
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The Selmer Curves

Given by the a�ne equation ax3 + by3 = c with abc 6= 0

Named by Ian Connell in Elliptic curve handbook, 1999

Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sd : x3 + y3 = d over Fq is birationally equivalent
to the Weierstrass curve Wd : v2 = u3 − 432d2, (Ian 1999)

Selmer curves are elliptic curves with discriminant ∆ = −21239d4 and
the j-invariant is 0.

Can be regarded as a particular case of the generalized Hessian curves
x3 + y3 + e = fxy which also has good properties for cryptographic
applications :

Point operation can be implemented in a highly parallel way (40%
performance improvement over Weiertrass curves) : (Smart, CHES
2001)
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The Selmer Curves

Given by the a�ne equation ax3 + by3 = c with abc 6= 0

Named by Ian Connell in Elliptic curve handbook, 1999

Can be transformed to a simpler form x3 + y3 = d

The Selmer curve Sd : x3 + y3 = d over Fq is birationally equivalent
to the Weierstrass curve Wd : v2 = u3 − 432d2, (Ian 1999)

Selmer curves are elliptic curves with discriminant ∆ = −21239d4 and
the j-invariant is 0.

Can be regarded as a particular case of the generalized Hessian curves
x3 + y3 + e = fxy which also has good properties for cryptographic
applications :

Fast formulas for the computation of the Tate pairing on Selmer
curves ( Zhang, Wang, Wang, Ye, ISPEC 2011)
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point operation on Selmer curves : Wang et al. 2011

(X1 : Y1 : Z1) + (X2 : Y2 : Z2) = (X3 : Y3 : Z3)
X3 = X1Z1Y

2
2 − X2Z2Y

2
1

Y3 = Y1Z1X
2
2 − Y2Z2X

2
1

Z3 = X1Y1Z
2
2 − X2Y2Z

2
1

Cost : 12M
2(X1 : Y1 : Z1) = (X3 : Y3 : Z3)

X3 = −Y1(2X 3
1 + Y 3

1 )
Y3 = X1(X 3

1 + 2Y 3
1 )

Z3 = Z1(X 3
1 − Y 3

1 )

Cost : 5M+2S
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Ate Pairing on Selmer curve : choice of Q

Let E : y2 = x3 + b and its twist E ′ : y ′2 = x ′3 + b/ω6 with b = −432d2.
The maps

E ′ −→ E −→ Sd

(x ′, y ′) 7−→ (x ′ω2, y ′ω3) 7−→
(
36d − y ′ω3

6x ′ω2
,
36d + y ′ω3

6x ′ω2

)
.

enable to consider points in G2 as Q = (S − Tω : S + Tω : V ) in
projective coordinates where Fqk = Fqk/2(ω) with ω in Fqk ,

S = 36d ,T = y ′ω2,V = 6x ′ω2 ∈ Fqk/2 .
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Ate pairing on Selmer Curves : Addition of points

(S1 − T1ω : S1 + T1ω : V1) + (S2 − T2ω : S2 + T2ω : V2) = (S3 − T3ω : S3 + T3ω : V3)


S3 = (V1S2 − V2S1)(S1S2 − 2T1T2ω

2) + (V1S1T
2
2 − V2S2T

2
1 )ω

2

T3 = (V1T2 − V2T1)(T1T2ω
2 − 2S1S2) + V1S

2
2T1 − V2S

2
1T2

V3 = S1V2 − S2V1)(S1V2 + S2V1) + (V1T2 − V2T1)(V1T2 + V2T1)ω
2

(5)

2(S1 − T1ω : S1 + T1ω : V1) = (S3 − T3ω : S3 + T3ω : V3)
S3 = −8S1T 3

1ω
2

T3 = T 4
1ω

2 − 6S2
1T

2
1 − 3

S4
1

ω2

V3 = (−6V1S
2
1T1 − 2V1T

3
1ω

2)

(6)
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Ate pairing on Selmer Curves : Miller function and
denominator elimination

Addition step :

hR,Q(P) =
cX xP + cY yP + cZ

Z3(xP + yP)− (X3 + Y3)
=

l1(P)

l2(P)
(7)

The denominator reduces to V3(xP + yP)− 2S3 ∈ Fqk/2

The addition step then consists in computing :
1 hR,Q(P) = cX xP + cY yP + cZ with

cX = Y1Z2 − Z1Y2

cY = Z1X2 − X1Z2

cZ = X1Y2 − Y1X2

2 The addition
(S1 − T1ω : S1 + T1ω : V1) + (S2 − T2ω : S2 + T2ω : V2) = (S3 − T3ω : S3 + T3ω : V3)

S3 = (V1S2 − V2S1)(S1S2 − 2T1T2ω
2) + (V1S1T

2
2 − V2S2T

2
1 )ω

2

T3 = (V1T2 − V2T1)(T1T2ω
2 − 2S1S2) + V1S

2
2T1 − V2S

2
1T2

V3 = S1V2 − S2V1)(S1V2 + S2V1) + (V1T2 − V2T1)(V1T2 + V2T1)ω
2

(8)
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Ate Pairing on Selmer curves : cost of the combined addition Miller step

Operations Values Costs
A := V1S2,B := V2S1 A = V1S2,B = V2S1 2me

C := S1S2, D := T1T2 C = S1S2,D = T1T2 2me

E := V1T2,F := S1T2 E = V1T2, F = S1T2 2me

G := V2T1,H := S2T1 G = V2T1,H = S2T1 2me

L := A− B,M1 := Dw2 L = V1S2 − V2S1, M1 = T1T2w2 1mc

M := L(C − 2M1) M = (V1S2 − V2S1)(S1S2 − 2T1T2w2) 1me

N1 := EF , N2 := GH N1 = V1T 2
2 S1, N2 = V2S2T 2

1 2me

N := (N1 − N2)w2 N = (V1S1T 2
2 − V2S2T 2

1 )w
2 1mc

O := E − G O = V1T2 − V2T1 -
P := M1 − 2C P = T1T2w2 − 2S1S2 -
Q := OP Q = (V1T2 − V2T1)(T1T2w2 − 2S1S2) 1me

R1 := AH, R2 := BF R1 = V1S2
2T1, R2 = V2S2

1T2 2me

U1 := A+ B, U2 := E + G U1 = V1S2 + V2S1, U2 = V1T2 + V2T1 -
U3 := OU2w2 U3 = (V1T2 − V2T1)(V1T2 + V2T1)w2 1me + 1mc

Table: Combined formulas for the point addition and Miller's function
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Ate Pairing on Selmer curves : cost of the combined addition Miller step

Operations Values Costs
U4 := −LU1 U4 = −(V1S2 − V2S1)(V1S2 + V2S1) 1me

X3 := M + N− -
(Q + R1 − R2)w
Y3 := M + N− -
(Q + R1 + R2)w
Z3 := U4 + U3 -
cX := −L− Ow cX = −(V1S2 − V2S1)− (V1T2 − V2T1)w -
cY := L− Ow cY = (V1S2 − V2S1)− (V1T2 − V2T1)w -
cZ := 2(F − H)w cZ = 2(S1T2 − S2T1)w -

hR,Q(P) := cX xP+ - k
2
m1 + k

2
m1 = km1

cY yP + cZ
f := f .hR,Q(P) 1mk

Total cost : 16me + 3mc + km1 + 1mk

Table: Combined formulas for the point addition and Miller's function
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Ate pairing on Selmer Curves : Miller function and
denominator elimination

Doubling step :

hR,R(P) =
cX xP + cY yP + cZ

Z3(xP + yP)− (X3 + Y3)
=

l1(P)

l2(P)
(9)

The denominator reduces to (−6V1S
2
1T1 − 2V1T

3
1w

2)(xP + yP) + 2T3 ∈ Fqk/2 .
The doubling step then consists in the computation of :

1 hR,R(P) = cX xP + cY yP + cZ with

cX = cY = Y1Z1 − X1Z1,
cZ = X 2

1 − Y 2
1 .

2 The doubling

2(S1 − T1ω : S1 + T1ω : V1) = (S3 − T3ω : S3 + T3ω : V3)
S3 = −8S1T 3

1ω
2

T3 = T 4
1ω

2 − 6S2
1T

2
1 − 3

S4
1

ω2

V3 = (−6V1S
2
1T1 − 2V1T

3
1ω

2)

(10)
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Ate Pairing on Selmer curves : cost of the combined
doubling Miller step

Operations Values Costs
A := S2

1 A = S2
1 1se

B := T 2
1 B = T 2

1 1se
C := ((S1 + T1)2 − A− B)/2 C = S1T1 1se
D := A2 D = X 4

1 1se
E := Bw2 E = T 2

1w
2 1mc

T3 := −12D + (3A− E)2 1se
S3 := 8CE 1me

F := V1T1 1me

V3 := (−2F (3A+ E))w 1me

X3 := S3 − T3w -
Y3 := S3 + T3w -
Z3 := V3 -
hR,R(P) := (2C(yP − xP))w km1 ++1se + 2mc

+(A+ Bw2)(xP + yP)− dV 2
1

f := f 2.hR,R(P) 1sk + 1mk

Total cost : 4me + 5se + 3mc + km1 + sk +mk

Table: Combined formulas for point doubling and Miller' function
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Ate Pairing on Selmer curves : Parallelising the addition step

Processor 1 Processor 2 Processor 3 Cost
m1 = V1S2 m2 = V2S1 m3 = S1S2 1me

m4 = T1T2 m5 = V1T2 m6 = S1T2 1me

m7 = V2T1 m8 = S2T1 m9 = m5m6 1me

m10 = m7m8 m11 = m1m8 m12 = m2m6 1me

a1 = m5 −m7 a2 = m5 +m7 −− −−
m13 = a1a2 −− −− 1me

c1 = m4w2 c2 = (m9 −m10)w2 c3 = m12w2 1mc

a3 = m1 −m2 a4 = c1 − 2m3 a5 = m1 +m2 −−
m14 = a3(m3 − 2c1) m15 = a1a4 m16 = −a3a5 1me

X3 = m14 + c2 Y3 = m14 + c2 Z3 = c3 +m16 −−
−(m15 +m11 −m12)w +(m15 +m11 −m12)w

cX = −a3 − a1w cY = a3 − a1w cZ = 2(m6 −m8)w −−
t1 = cX xP t2 = cY yP −− k

2
m1

f = f · (t1 + t2 + cZ ) −− −− 1mk

Total cost : 6me + 1mc +
k
2
m1 + 1mk

Table: Parallel execution of addition step in Miller's function
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Ate Pairing on Selmer curves : Parallelizing the doubling step

Processor 1 Processor 2 Processor 3 Cost
s1 = S2

1 s2 = T 2
1 s3 = V 2

1 1se
c1 = s2w2 c2 = s1 c3 = ds3 1mc

s4 = (S1 + T1)2 s5 =
s2
1

w2
s6 = (3

s2
1

w2
− c1w2)2 1se

a1 = (s4 − s1 − s2)/2 a2 = −12s5 + s6 m1 = V1T1 1me

m2 = −8a1c1 m3 = (−2m1(3s1 + c1))w f1 = f 2 1me + 1sk
X3 = m2 − a2w Y3 = m2 + a2w Z3 = m3 −−

t1 = 2a1(yP − xP) t2 = (c2 + s2w2)(xP + yP) −− k
2
m1

f = f1 · (t1w + t2 − c3) −− −− 1mk

Total cost : 2me + 2se + 1mc +
k
2
m1 + 1sk + 1mk

Table: Parallel execution of doubling step in Miller's function
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Ate Pairing on Selmer curves : Comparison with other work

In the Table we compare the costs for one iteration for Ate on the Selmer
curve Sd : x3 + y3 = d and on the Weierstrass curve W : y2 = x3 + c2

([1] Costello, Lange, Naehrig, PKC 2010).

Pairings Doubling Addition Mixed Addition
Ate(Q, P) 4me + 7se + km1+ 16me + 2se + km1 + 1mk 12me + 2se + km1

Weierstrass(a = 0)[1] 1mk + 1sk +1mk

ate(Q, P) 3me + 5se + km1+ 16me + km1 + 1mk 14me + km1 + 1mk

This work 1mk + 1sk
ate(Q, P)(This work) 2me + 2se +

k
2
m1+ 6me +

k
2
m1 + 1mk �

Parallelization 1mk + 1sk

Table: Comparison of costs of one iteration for Ate pairing on Selmer and
Weierstrass Elliptic Curves
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Pairing friendly Selmer curves

Let p be a prime number with p ≡ 1 mod 3. The Ed : y2 = x3 + d2 is
an ordinary elliptic curve.

We have the following isomorphism

ϕ : Ed → Wd

(x , y) 7→ (−12x ,−24
√
−3y)

and the curve Wd : y2 = x3 − 432 · 4 · d2 is birrationally equivalent to
the Selmer curve Sd : x3 + y3 = 2d

The construction of pairing friendly curve of the form
Ed : y2 = x3 + d2 is given by the construction 6.6 of Freemann with
ρ = 1.5
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Thanks for your attention !
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