Faster Ate Pairing Computation on Selmer's Model of Elliptic Curve

Emmanuel Fouotsa (joint work with Abdoul Aziz Ciss)

University of Bamenda Cameroon

ECC 2016 Izmir, 05-07 Sept. 2016

Pairings

- Definition of Pairings on Elliptic Curves
- Omputation of pairings on elliptic curves
- Some Optimisations
- Ilistory of the computation of pairings on Elliptic Curves
- Ate Pairing on the Selmer model of Elliptic Curves
 - The Selmer Model
 - O The Ate pairing on the Selmer model of Elliptic Curves
 - Omparison

Pairing-Based Cryptography (PBC) enables many elegant solutions to cryptographic problems :

- Identity-based encryption
- Short signatures
- Non-interactive authenticated key agreement

Pairing computation is the most expensive operation in PBC.

Important : Make it faster !

 $(\mathbb{G}_1,+)$ $(\mathbb{G}_2,+)$ and (\mathbb{G}_3,\times) commutative groups of order *n*. A pairing is a map

$$e_n: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$$

such that

- *e_n* is bilinear :
 - $e_n(S_1 + S_2, T) = e_n(S_1, T)e_n(S_2, T)$ • $e_n(S, T_1 + T_2) = e_n(S, T_1)e_n(S, T_2)$
- *e_n* is non degenerate.
- en efficiently computable

Context

- *E*, elliptic curve on \mathbb{F}_q , identity element \mathcal{O} .
- r, a large divisor (closed to) of $\#E(\mathbb{F}_q)$
- ullet Two linearly independent points $P\in \mathbb{G}_1$ and $Q\in \mathbb{G}_2$ of order r where

•
$$\mathbb{G}_1 = E\left(\overline{\mathbb{F}_q}\right)[r] \cap \operatorname{Ker}(\pi_q - [1]) = E(\mathbb{F}_q)[r]$$

 G₂ = E (F_q) [r] ∩ Ker(π_q − [q]) = E(F_{q^k})[r] (Balasubramanian and Koblitz)

where k is called the embedding degree (smallest integer such that $r|(q^k-1))$

Tate and Ate Pairings on elliptic curves

- Take two linearly independent points of order r : P ∈ G₁ = E(F_q)[r] and Q ∈ G₂ = E(F_{q^k})[r].
- Let $f_{m,R}$ be the function with divisor

$$Div (f_{m,R}) = m(R) - m(\mathcal{O})$$
(1)

we have the pairings :

• The reduced Tate Pairing is the map

$$e_r: \quad \mathbb{G}_1 \times \mathbb{G}_2 \quad \rightarrow \quad \mu_r \\ (P, Q) \quad \mapsto \quad f_{r, P}(Q)^{\frac{q^k - 1}{r}}$$

$$(2)$$

Tate and Ate Pairings on elliptic curves

- Take two linearly independent points of order r : P ∈ G₁ = E(F_q)[r] and Q ∈ G₂ = E(F_{q^k})[r].
- Let $f_{m,R}$ be the function with divisor

$$Div (f_{m,R}) = m(R) - m(\mathcal{O})$$
(1)

we have the pairings :

• The reduced Tate Pairing is the map

$$e_r: \quad \mathbb{G}_1 \times \mathbb{G}_2 \quad \rightarrow \quad \mu_r \\ (P, Q) \quad \mapsto \quad f_{r, P}(Q)^{\frac{q^k - 1}{r}}$$

$$(2)$$

• The ate pairing is the map

$$e_{\mathcal{A}}: \quad \mathbb{G}_{2} \times \mathbb{G}_{1} \quad \rightarrow \quad \mu_{r},$$

$$(Q, P) \quad \mapsto \quad f_{T,Q}(P)^{\frac{q^{k}-1}{r}},$$
(3)

where T = t - 1; $log(T) \approx log(r)/2$

Pairings : Tools for the computation

The computation of a pairing requires two main operations :

- The computation of the function $f_{m,R}$
- The final exponentiation $f_{m.R}^{\frac{q^k-1}{r}}$

For the computation of the function $f_{m,R}$, let $f_{i,R}$ be the function such that $\text{Div}(f_{i,R}) = i(R) - ([i]R) - (i-1)(\mathcal{O})$, then

• For
$$i = r$$
 we have Div $(f_{r,P}) = r(P) - r(O)$

٩

$$f_{i+j,P} = f_{i,P} \cdot f_{j,P} \cdot \boldsymbol{h}_{[i]P,[j]P}$$
(4)

where $h_{R,S}$ is the function that define the group law on the elliptic curve $Div(h_{R,S}) = (R) + (S) - (S + R) - (O)$

Examples

• For Weiertrass curves, $h_{R,S} = \frac{\ell_{R,S}}{v_{R+S}}$ quotient of line functions (Huff, Hessian,...)

• For Edward curves, h_{R,S} is the quotient of quadratic functions!

We always have $H_{R,S} = \frac{u}{v}$

(Emmanuel Fouotsa)

7 / 28

イロト イポト イヨト イヨト

$$\begin{array}{l} \textit{Input} : P \in E(\mathbb{F}_q)[r], \ Q \in E(\mathbb{F}_{q^k})[r], \\ r = (1, r_{m-1}, ..., r_1, r_0)_2. \\ \hline \textit{Output} : The \ \textit{Tate pairing of } P \ \textit{and } Q : e_m(P, Q) \\ \hline 1. \ \textit{do } f \leftarrow 1 \ \textit{and } R \leftarrow P \\ \hline 2. \ \textit{for } i = m - 1 \ \textit{a} \ 0 \\ \hline 2.1 \qquad \textit{do } f \leftarrow f^2 \cdot H_{R,R}(Q) \ \textit{and } R \leftarrow 2R \\ \hline 2.2 \qquad \textit{if } r_i = 1 \ \textit{then } f \leftarrow f \cdot H_{R,P}(Q) \ \textit{and } R \leftarrow R + P \\ \hline 3. \ e_m(P, Q) \leftarrow f^{\frac{q^k-1}{r}} \end{array}$$

$$\begin{array}{l} \textit{Input} : P \in E(\mathbb{F}_q)[r], \ Q \in E(\mathbb{F}_{q^k})[r], \\ T = (1, T_{m-1}, ..., T_1, T_0)_2. \\ \textit{Output} : The ate pairing of P and Q : e_m(Q, P) \\ 1. \ do \ f \leftarrow 1 \ and \ R \leftarrow Q \\ 2. \ for \ i = m-1 \ a \ 0 \\ 2.1 \qquad do \ f \leftarrow f^2 \cdot H_{R,R}(P) \ and \ R \leftarrow 2R \\ 2.2 \qquad if \ T_i = 1 \ then \ f \leftarrow f \cdot H_{R,Q}(P) \ and \ R \leftarrow R + Q \\ 3. \ e_m(Q, P) \leftarrow f^{\frac{q^k-1}{r}} \end{array}$$

Input :
$$P \in E(\mathbb{F}_q)[r]$$
, $Q \in E(\mathbb{F}_{q^k})[r]$,
 $r = (1, r_{m-1}, ..., r_1, r_0)_2$.
Output : The Tate pairing of P and $Q : e_m(P, Q)$
1. do $f \leftarrow 1$ and $R \leftarrow P$
2. for $i = m - 1$ to 0
2.1 do $f \leftarrow f^2 \cdot H_{R,R}(Q) = u(Q)$ and $R \leftarrow 2R$
2.2 if $r_i = 1$ then $f \leftarrow f \cdot u(Q)$ and $R \leftarrow R + P$
3. $e_m(P, Q) \leftarrow f^{\frac{q^k-1}{r}}$

One can avoid the denominator of $H_{R,S} = \frac{u}{v}$

Input :
$$P \in E(\mathbb{F}_q)[r]$$
, $Q \in E(\mathbb{F}_{q^k})[r]$,
 $r = (1, r_{m-1}, ..., r_1, r_0)_2$.
Output : The Tate pairing of P and $Q : e_m(P, Q)$
1. do $f \leftarrow 1$ and $R \leftarrow P$
2. for $i = m - 1$ to 0
2.1 do $f \leftarrow f^2 \cdot u(Q)$ (projective) and $R \leftarrow 2R$
2.2 if $r_i = 1$ then $f \leftarrow f \cdot u(Q)$ (projective) and $R \leftarrow R + P$
 $3.e_m(P, Q) \leftarrow f^{\frac{q^k-1}{r}}$

Avoid inversions turning to projective coordinates

Input :
$$P \in E(\mathbb{F}_q)[r]$$
, $Q \in E(\mathbb{F}_{q^k})[r]$,
 $r = (1, r_{m-1}, ..., r_1, r_0)_2$.
Output : The Tate pairing of P and $Q : e_m(P, Q)$
1. do $f \leftarrow 1$ and $R \leftarrow P$
2. for $i = m - 1$ to 0
2.1 do $f \leftarrow f^2 \cdot u(Q)$ and $R \leftarrow 2R$
2.2 if $r_i = 1$ then $f \leftarrow f \cdot u(Q)$ and $R \leftarrow R + P$
 $3.e_m(P, Q) \leftarrow f^{\frac{q^k-1}{r}}$

Improve the arithmetic in the extension \mathbb{F}_{q^k} : $k = 2^i 3^j$ is nice since ...

Input :
$$P \in E(\mathbb{F}_q)[r]$$
, $Q \in E(\mathbb{F}_{q^k})[r]$,
 $r = (1, r_{m-1}, ..., r_1, r_0)_2$.
Output : The Tate pairing of P and $Q : e_m(P, Q)$
1. do $f \leftarrow 1$ and $R \leftarrow P$
2. for $i = m - 1$ to 0
2.1 do $f \leftarrow f^2 \cdot u(Q)$ and $R \leftarrow 2R$
2.2 if $r_i = 1$ (Unlikely) then $f \leftarrow f \cdot u(Q)$ and $R \leftarrow R + P$
3. $e_m(P, Q) \leftarrow f^{\frac{q^k-1}{r}}$

Choose a lower Hamming weight r

Input :
$$P \in E(\mathbb{F}_q)[r]$$
, $Q \in E(\mathbb{F}_{q^k})[r]$,
 $r = (1, r_{m-1}, ..., r_1, r_0)_2$.
Output : The Tate pairing of P and $Q : e_m(P, Q)$
1. do $f \leftarrow 1$ and $R \leftarrow P$
2. for $i = m - 1$ to 0
2.1 do $f \leftarrow f^2 \cdot u(Q)$ and $R \leftarrow 2R$
2.2 if $r_i = 1$ then $f \leftarrow f \cdot u(Q)$ and $R \leftarrow R + P$
3. $e_m(P, Q) \leftarrow f^{\frac{q^k-1}{r}}$

Split the final exponentiation :
$$rac{p^k-1}{r} = \left[rac{p^k-1}{\phi_k(p)}
ight] \cdot \left[rac{\phi_k(p)}{r}
ight]$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Pairings : Optimising computations

Miller's algorithm and Tate pairing computation, Mil'86

Input :
$$P \in E(\mathbb{F}_q)[r], Q \in E(\mathbb{F}_{q^k})[r],$$

 $r = (1, r_{m-1}, ..., r_1, r_0)_2.$
Output : The Tate pairing of P and $Q : e_m(P, Q)$
1. do $f \leftarrow 1$ and $R \leftarrow P$
2. for $i = m - 1$ to 0
2.1 do
2.2 if $r_i = 1$ then $f \leftarrow f \cdot u(Q)$ and $R \leftarrow R + P$
3. $e_m(P, Q) \leftarrow f^{\frac{q^k-1}{r}}$

Split the final exponentiation : $\frac{p^k-1}{r} = \begin{bmatrix} \frac{p^k-1}{\phi_k(p)} \end{bmatrix} \cdot \begin{bmatrix} \frac{\phi_k(p)}{r} \end{bmatrix}$ Applied "vectorial addition chain method", Scott et al. Pairing 2009

University of Bamenda, Cameroon

Input :
$$P \in E(\mathbb{F}_q)[r]$$
, $Q \in E(\mathbb{F}_{q^k})[r]$,
 $r = (1, r_{m-1}, \dots, r_1, r_0)_2$.
Output : The Tate pairing of P and $Q : e_m(P, Q)$
1. do $f \leftarrow 1$ and $R \leftarrow P$
2. for $i = m - 1$ to 0
2.1 do
2.2 if $r_i = 1$ then $f \leftarrow f \cdot u(Q)$ and $R \leftarrow R + P$
3. $e_m(P, Q) \leftarrow f^{\frac{q^k - 1}{r}}$

Split the final exponentiation : $\frac{p^{k}-1}{r} = \left[\frac{p^{k}-1}{\phi_{k}(p)}\right] \cdot \left[\frac{\phi_{k}(p)}{r}\right]$ "Lattices-based method" by Fuentes et al. SAC 2011

Emmanuel Fouotsa)

Efficiency depends also on the shape of the curve and its arithmetic

- Pairings on Weierstrass model $y^2 = x^3 + ax + b$
 - Costello, Hisil et al. (Pairing 2009)
 - Costello, Lange et al.(PKC 2010)
- 2 Pairings on Edwards curves $ax^2 + y^2 = 1 + dx^2y^2$
 - Sarkar,Laxman et al. (Pairing 2008)
 - Ionica and Joux (Indocrypt 2008)
 - Arène, Lange et al. (Journal of Number theory, 2011)

Efficiency depends also on the shape of the curve and its arithmetic

- Pairings on the Huff model by Joye, Tibouchi et al.(2010) : aX(Y² - Z²) = bY(X² - Z²)
- Pairings on the Selmer model by Zhang, Wang et al.(ISPEC 2011) : ax³ + by³ = d
- Pairings on the Hessian model by Gu, Gu et al. (ICISC 2010): $X^3 + Y^3 + Z^3 = 3dXYZ$
- Pairings on the Jacobi model : E_d : $y^2 = dx^4 + 2\delta x^2 + 1$ by
 - Wang, Wang et al.(CJE 2011)
 - Fouotsa and Duquesne. Pairing 2012
 - Fouotsa, Duquesne, El Mrabet.(Journal of Mathematical Cryptology, 2014)

Definition

An elliptic curve E is said pairing-friendly if :

- k is small (less than 50)
- $r > \sqrt{q}$

Pairing-friendly curves are rare !!! but can be obtained by polynomial parameterisations

э

We are looking for a curve E such that :

•
$$r \mid q^k - 1$$

э

We are looking for a curve E such that :

$$\begin{array}{c|c} \bullet & r \mid q^k - 1 \\ \hline \bullet & r \mid \neq E \end{array}$$

э

We are looking for a curve E such that :

•
$$r \mid q^k - 1$$
 implies (MNT) that $r \mid \varphi_k(q)$
• $r \mid \neq E$

We are looking for a curve E such that :

•
$$r \mid q^k - 1$$
 implies (MNT) that $r \mid \varphi_k(q)$

2 $r \mid \neq E$ if furthermore $r \mid \varphi_k(q)$ then (BLS) $r \mid \varphi_k(t-1)$

We are looking for a curve E such that :

1
$$r \mid q^k - 1$$
 implies (MNT) that $r \mid arphi_k(q)$

2 $r \mid \neq E$ if furthermore $r \mid \varphi_k(q)$ then (BLS) $r \mid \varphi_k(t-1)$

So to find a pairing friendly curve, fix a small k and find r(x), t(x) and q(x) such that $r(x) | \varphi_k(t(x) - 1)$ and $r(x) | q(x)^k - 1$

Polynomial parameterisations of Barreto-Naehrig (BN) curves

$$k = 12$$

$$p(x) = 36x^{4} + 36x^{3} + 24x^{2} + 6x + 1$$

$$r(x) = 36x^{4} + 36x^{3} + 18x^{2} + 6x + 1$$

$$t(x) = 6x^{2} + 1$$

- old S ldeal situation at the 128-bit security level with $ho=rac{log(p)}{log(r)}=1$
- 2 curve of the form $y^2 = x^3 + b$

2- Faster ate pairing on Selmer Curves

æ

- Given by the affine equation $ax^3 + by^3 = c$ with $abc \neq 0$
- Named by Ian Connell in Elliptic curve handbook, 1999

- Given by the affine equation $ax^3 + by^3 = c$ with $abc \neq 0$
- Named by Ian Connell in Elliptic curve handbook, 1999
- Can be transformed to a simpler form $x^3 + y^3 = d$

- Given by the affine equation $ax^3 + by^3 = c$ with $abc \neq 0$
- Named by Ian Connell in Elliptic curve handbook, 1999
- Can be transformed to a simpler form $x^3 + y^3 = d$
- The Selmer curve $S_d: x^3 + y^3 = d$ over \mathbb{F}_q is birationally equivalent to the Weierstrass curve $W_d: v^2 = u^3 432d^2$, (lan 1999)

- Given by the affine equation $ax^3 + by^3 = c$ with $abc \neq 0$
- Named by Ian Connell in Elliptic curve handbook, 1999
- Can be transformed to a simpler form $x^3 + y^3 = d$
- The Selmer curve $S_d: x^3 + y^3 = d$ over \mathbb{F}_q is birationally equivalent to the Weierstrass curve $W_d: v^2 = u^3 432d^2$, (lan 1999)
- Selmer curves are elliptic curves with discriminant $\Delta = -2^{12}3^9 d^4$ and the *j*-invariant is 0.

- Given by the affine equation $ax^3 + by^3 = c$ with $abc \neq 0$
- Named by Ian Connell in Elliptic curve handbook, 1999
- Can be transformed to a simpler form $x^3 + y^3 = d$
- The Selmer curve $S_d: x^3 + y^3 = d$ over \mathbb{F}_q is birationally equivalent to the Weierstrass curve $W_d: v^2 = u^3 432d^2$, (lan 1999)
- Selmer curves are elliptic curves with discriminant $\Delta = -2^{12} 3^9 d^4$ and the *j*-invariant is 0.
- Can be regarded as a particular case of the generalized Hessian curves $x^3 + y^3 + e = fxy$ which also has good properties for cryptographic applications :

- Given by the affine equation $ax^3 + by^3 = c$ with $abc \neq 0$
- Named by Ian Connell in Elliptic curve handbook, 1999
- Can be transformed to a simpler form $x^3 + y^3 = d$
- The Selmer curve $S_d: x^3 + y^3 = d$ over \mathbb{F}_q is birationally equivalent to the Weierstrass curve $W_d: v^2 = u^3 432d^2$, (lan 1999)
- Selmer curves are elliptic curves with discriminant $\Delta = -2^{12} 3^9 d^4$ and the *j*-invariant is 0.
- Can be regarded as a particular case of the generalized Hessian curves $x^3 + y^3 + e = fxy$ which also has good properties for cryptographic applications :
- Resistance to side channel attacks (Unified formulas) : (Joye and Quisquater, CHES 2001)

|zmir, 07/09/16

- Given by the affine equation $ax^3 + by^3 = c$ with $abc \neq 0$
- Named by Ian Connell in Elliptic curve handbook, 1999
- Can be transformed to a simpler form $x^3 + y^3 = d$
- The Selmer curve $S_d: x^3 + y^3 = d$ over \mathbb{F}_q is birationally equivalent to the Weierstrass curve $W_d: v^2 = u^3 432d^2$, (lan 1999)
- Selmer curves are elliptic curves with discriminant $\Delta = -2^{12} 3^9 d^4$ and the *j*-invariant is 0.
- Can be regarded as a particular case of the generalized Hessian curves $x^3 + y^3 + e = fxy$ which also has good properties for cryptographic applications :
- Some standard curves can be transformed to Hessian curves : (Smart, CHES 2001)

The Selmer Curves

- Given by the affine equation $ax^3 + by^3 = c$ with $abc \neq 0$
- Named by Ian Connell in Elliptic curve handbook, 1999
- Can be transformed to a simpler form $x^3 + y^3 = d$
- The Selmer curve $S_d: x^3 + y^3 = d$ over \mathbb{F}_q is birationally equivalent to the Weierstrass curve $W_d: v^2 = u^3 432d^2$, (lan 1999)
- Selmer curves are elliptic curves with discriminant $\Delta = -2^{12}3^9 d^4$ and the *j*-invariant is 0.
- Can be regarded as a particular case of the generalized Hessian curves $x^3 + y^3 + e = fxy$ which also has good properties for cryptographic applications :
- Point operation can be implemented in a highly parallel way (40% performance improvement over Weiertrass curves) : (Smart, CHES 2001)

- Given by the affine equation $ax^3 + by^3 = c$ with $abc \neq 0$
- Named by Ian Connell in Elliptic curve handbook, 1999
- Can be transformed to a simpler form $x^3 + y^3 = d$
- The Selmer curve $S_d: x^3 + y^3 = d$ over \mathbb{F}_q is birationally equivalent to the Weierstrass curve $W_d: v^2 = u^3 432d^2$, (lan 1999)
- Selmer curves are elliptic curves with discriminant $\Delta = -2^{12} 3^9 d^4$ and the *j*-invariant is 0.
- Can be regarded as a particular case of the generalized Hessian curves $x^3 + y^3 + e = fxy$ which also has good properties for cryptographic applications :
- Fast formulas for the computation of the Tate pairing on Selmer curves (Zhang, Wang, Wang, Ye, ISPEC 2011)

|zmir, 07/09/16

$$\begin{aligned} (X_1:Y_1:Z_1) + (X_2:Y_2:Z_2) &= (X_3:Y_3:Z_3) \\ \begin{cases} X_3 &= X_1Z_1Y_2^2 - X_2Z_2Y_1^2 \\ Y_3 &= Y_1Z_1X_2^2 - Y_2Z_2X_1^2 \\ Z_3 &= X_1Y_1Z_2^2 - X_2Y_2Z_1^2 \end{aligned}$$

Cost : 12M 2($X_1 : Y_1 : Z_1$) = ($X_3 : Y_3 : Z_3$)

$$\begin{cases} X_3 &= -Y_1(2X_1^3 + Y_1^3) \\ Y_3 &= X_1(X_1^3 + 2Y_1^3) \\ Z_3 &= Z_1(X_1^3 - Y_1^3) \end{cases}$$

Cost: 5M+2S

Let $E: y^2 = x^3 + b$ and its twist $E': y'^2 = x'^3 + b/\omega^6$ with $b = -432d^2$. The maps

$$\begin{array}{ccccc} E' & \longrightarrow & E & \longrightarrow & S_d \\ (x',y') & \longmapsto & (x'\omega^2,y'\omega^3) & \longmapsto & \left(\frac{36d-y'\omega^3}{6x'\omega^2},\frac{36d+y'\omega^3}{6x'\omega^2}\right) \end{array}$$

enable to consider points in \mathbb{G}_2 as $Q = (S - T\omega : S + T\omega : V)$ in projective coordinates where $\mathbb{F}_{q^k} = \mathbb{F}_{q^{k/2}}(\omega)$ with ω in \mathbb{F}_{q^k} , $S = 36d, T = y'\omega^2, V = 6x'\omega^2 \in \mathbb{F}_{q^{k/2}}$.

٠

 $(S_1 - T_1\omega : S_1 + T_1\omega : V_1) + (S_2 - T_2\omega : S_2 + T_2\omega : V_2) = (S_3 - T_3\omega : S_3 + T_3\omega : V_3)$

$$\begin{cases} S_{3} = (V_{1}S_{2} - V_{2}S_{1})(S_{1}S_{2} - 2T_{1}T_{2}\omega^{2}) + (V_{1}S_{1}T_{2}^{2} - V_{2}S_{2}T_{1}^{2})\omega^{2} \\ T_{3} = (V_{1}T_{2} - V_{2}T_{1})(T_{1}T_{2}\omega^{2} - 2S_{1}S_{2}) + V_{1}S_{2}^{2}T_{1} - V_{2}S_{1}^{2}T_{2} \\ V_{3} = S_{1}V_{2} - S_{2}V_{1})(S_{1}V_{2} + S_{2}V_{1}) + (V_{1}T_{2} - V_{2}T_{1})(V_{1}T_{2} + V_{2}T_{1})\omega^{2} \end{cases}$$
(5)

 $2(S_1 - T_1\omega : S_1 + T_1\omega : V_1) = (S_3 - T_3\omega : S_3 + T_3\omega : V_3)$

$$\begin{cases} S_3 = -8S_1 T_1^3 \omega^2 \\ T_3 = T_1^4 \omega^2 - 6S_1^2 T_1^2 - 3\frac{S_1^4}{\omega^2} \\ V_3 = (-6V_1 S_1^2 T_1 - 2V_1 T_1^3 \omega^2) \end{cases}$$
(6)

Ate pairing on Selmer Curves : Miller function and denominator elimination

Addition step :

$$h_{R,Q}(P) = \frac{c_X x_P + c_Y y_P + c_Z}{Z_3(x_P + y_P) - (X_3 + Y_3)} = \frac{l_1(P)}{l_2(P)}$$
(7)

The denominator reduces to $V_3(x_P + y_P) - 2S_3 \in \mathbb{F}_{q^{k/2}}$ The addition step then consists in computing :

•
$$h_{R,Q}(P) = c_X x_P + c_Y y_P + c_Z$$
 with
 $c_X = Y_1 Z_2 - Z_1 Y_2$
 $c_Y = Z_1 X_2 - X_1 Z_2$
 $c_Z = X_1 Y_2 - Y_1 X_2$

2 The addition

 $(S_1 - T_1\omega : S_1 + T_1\omega : V_1) + (S_2 - T_2\omega : S_2 + T_2\omega : V_2) = (S_3 - T_3\omega : S_3 + T_3\omega :$

$$\begin{cases} S_{3} = (V_{1}S_{2} - V_{2}S_{1})(S_{1}S_{2} - 2T_{1}T_{2}\omega^{2}) + (V_{1}S_{1}T_{2}^{2} - V_{2}S_{2}T_{1}^{2})\omega^{2} \\ T_{3} = (V_{1}T_{2} - V_{2}T_{1})(T_{1}T_{2}\omega^{2} - 2S_{1}S_{2}) + V_{1}S_{2}^{2}T_{1} - V_{2}S_{1}^{2}T_{2} \\ V_{3} = S_{1}V_{2} - S_{2}V_{1})(S_{1}V_{2} + S_{2}V_{1}) + (V_{1}T_{2} - V_{2}T_{1})(V_{1}T_{2} + V_{2}T_{1})\omega^{2} \\ (8)$$

Operations	Values	Costs
$A := V_1 S_2, B := V_2 S_1$	$A = V_1 S_2, B = V_2 S_1$	2 <i>m</i> e
$C := S_1 S_2, D := T_1 T_2$	$C = S_1 S_2, D = T_1 T_2$	2 <i>m</i> _e
$E := V_1 T_2, F := S_1 T_2$	$E=V_1T_2$, $F=S_1T_2$	2 <i>m</i> _e
$G := V_2 T_1, H := S_2 T_1$	$G = V_2 T_1, H = S_2 T_1$	2 <i>m</i> e
$L := A - B, M_1 := Dw^2$	$L = V_1 S_2 - V_2 S_1$, $M_1 = T_1 T_2 w^2$	1 <i>m</i> c
$M := L(C - 2M_1)$	$M = (V_1 S_2 - V_2 S_1)(S_1 S_2 - 2T_1 T_2 w^2)$	$1m_e$
$N_1 := EF, N_2 := GH$	$N_1 = V_1 T_2^2 S_1, N_2 = V_2 S_2 T_1^2$	2 <i>m</i> e
$N := (N_1 - N_2)w^2$	$N = (V_1 S_1 T_2^2 - V_2 S_2 T_1^2) w^2$	1 <i>m</i> c
O := E - G	$O = V_1 T_2 - V_2 T_1$	-
$P := M_1 - 2C$	$P = T_1 T_2 w^2 - 2S_1 S_2$	-
Q := OP	$Q = (V_1 T_2 - V_2 T_1)(T_1 T_2 w^2 - 2S_1 S_2)$	$1m_e$
$R_1 := AH, R_2 := BF$	$R_1 = V_1 S_2^2 T_1, R_2 = V_2 S_1^2 T_2$	2 <i>m</i> e
$U_1 := A + B, \ U_2 := E + G$	$U_1 = V_1 S_2 + V_2 S_1, \ U_2 = V_1 T_2 + V_2 T_1$	-
$U_3 := OU_2 w^2$	$U_3 = (V_1 T_2 - V_2 T_1)(V_1 T_2 + V_2 T_1)w^2$	$1m_{e} + 1m_{c}$

Table: Combined formulas for the point addition and Miller's function

Operations	Values	Costs
$U_4 := -LU_1$	$U_4 = -(V_1S_2 - V_2S_1)(V_1S_2 + V_2S_1)$	1 <i>m</i> _e
$X_3 := M + N -$		=
$(Q+R_1-R_2)w$		
$Y_3 := M + N -$		-
$(Q+R_1+R_2)w$		
$Z_3 := U_4 + U_3$		=
$c_X := -L - Ow$	$c_X = -(V_1S_2 - V_2S_1) - (V_1T_2 - V_2T_1)w$	=
$c_Y := L - Ow$	$c_{Y} = (V_1S_2 - V_2S_1) - (V_1T_2 - V_2T_1)w$	=
$c_Z := 2(F - H)w$	$c_Z = 2(S_1 T_2 - S_2 T_1)w$	=
$h_{R,Q}(P) := c_X x_P +$	-	$\frac{k}{2}m_1 + \frac{k}{2}m_1 = km_1$
$c_Y y_P + c_Z$		
$f := f.h_{R,Q}(P)$		$1m_k$
Total cost :	$16m_e + 3m_c + km_1 + 1m_k$	

Table: Combined formulas for the point addition and Miller's function

э

Ate pairing on Selmer Curves : Miller function and denominator elimination

Doubling step :

$$h_{R,R}(P) = \frac{c_X x_P + c_Y y_P + c_Z}{Z_3(x_P + y_P) - (X_3 + Y_3)} = \frac{l_1(P)}{l_2(P)}$$
(9)

The denominator reduces to $(-6V_1S_1^2T_1 - 2V_1T_1^3w^2)(x_P + y_P) + 2T_3 \in \mathbb{F}_{q^{k/2}}$. The doubling step then consists in the computation of :

•
$$h_{R,R}(P) = c_X x_P + c_Y y_P + c_Z$$
 with
 $c_X = c_Y = Y_1 Z_1 - X_1 Z_1,$
 $c_Z = X_1^2 - Y_1^2.$

2 The doubling

 $2(S_1 - T_1\omega : S_1 + T_1\omega : V_1) = (S_3 - T_3\omega : S_3 + T_3\omega : V_3)$

$$\begin{cases}
S_3 = -8S_1T_1^3\omega^2 \\
T_3 = T_1^4\omega^2 - 6S_1^2T_1^2 - 3\frac{S_1^4}{\omega^2} \\
V_3 = (-6V_1S_1^2T_1 - 2V_1T_1^3\omega^2)
\end{cases}$$
(10)

Ate Pairing on Selmer curves : cost of the combined doubling Miller step

Operations	Values	Costs
$A := S_1^2$	$A = S_{1}^{2}$	1 <i>s</i> e
$B := \overline{T_1^2}$	$B = T_{1}^{2}$	1 <i>s</i> e
$C := ((S_1 + T_1)^2 - A - B)/2$	$C = S_1 \overline{T}_1$	1 <i>s</i> e
$D := A^2$	$D = X_{1}^{4}$	1 <i>s</i> e
$E := Bw^2$	$E = T_1^2 w^2$	1 <i>m</i> c
$T_3 := -12D + (3A - E)^2$	_	1 <i>s</i> e
$S_3 := 8 CE$		1 <i>m</i> e
$F := V_1 T_1$		1 <i>m</i> e
$V_3 := (-2F(3A + E))w$		1 <i>m</i> e
$X_3 := S_3 - T_3 w$		-
$Y_3 := S_3 + T_3 w$		-
$Z_3 := V_3$		-
$h_{R,R}(P) := (2C(y_P - x_P))w$		$km_1 + +1s_e + 2m_c$
$+(A+Bw^2)(x_P+y_P)-dV_1^2$		
$f := f^2 \cdot h_{R,R}(P)$		$1s_k + 1m_k$
Total cost : 4r	$m_e + 5s_e + 3m$	$c_c + km_1 + s_k + m_k$

Table: Combined formulas for point doubling and Miller' function

zmir, 07/09/16

Processor 1	Processor 2	Processor 3	Cost
$m_1 = V_1 S_2$	$m_2 = V_2 S_1$	$m_3 = S_1 S_2$	$1m_e$
$m_4 = T_1 T_2$	$m_5 = V_1 T_2$	$m_6 = S_1 T_2$	$1m_e$
$m_7 = V_2 T_1$	$m_8 = S_2 T_1$	$m_9 = m_5 m_6$	1 <i>m</i> e
$m_{10} = m_7 m_8$	$m_{11} = m_1 m_8$	$m_{12} = m_2 m_6$	1 <i>m</i> e
$a_1 = m_5 - m_7$	$a_2 = m_5 + m_7$		
$m_{13} = a_1 a_2$			$1m_e$
$c_1 = m_4 w^2$	$c_2 = (m_9 - m_{10})w^2$	$c_3 = m_{12} w^2$	1 <i>m</i> c
$a_3 = m_1 - m_2$	$a_4 = c_1 - 2m_3$	$a_5 = m_1 + m_2$	
$m_{14} = a_3(m_3 - 2c_1)$	$m_{15} = a_1 a_4$	$m_{16} = -a_3 a_5$	$1m_e$
$X_3 = m_{14} + c_2$	$Y_3 = m_{14} + c_2$	$Z_3 = c_3 + m_{16}$	
$-(m_{15}+m_{11}-m_{12})w$	$+(m_{15}+m_{11}-m_{12})w$		
$c_X = -a_3 - a_1 w$	$c_Y = a_3 - a_1 w$	$c_Z = 2(m_6 - m_8)w$	
$t_1 = c_X x_P$	$t_2 = c_Y y_P$		$\frac{k}{2}m_1$
$f = f \cdot (t_1 + t_2 + c_Z)$			$\bar{1}m_k$
Total cost : $6m_e + 1m_c + \frac{k}{2}m_1 + 1m_k$			

Table: Parallel execution of addition step in Miller's function

Processor 1	Processor 2	Processor 3	Cost
$s_1 = S_1^2$	$s_2 = T_1^2$	$s_3 = V_1^2$	1 <i>s</i> _e
$c_1 = s_2 w^2$	$c_2 = s_1$	$c_3 = ds_3$	1 <i>m</i> c
$s_4 = (S_1 + T_1)^2$	$s_5 = rac{s_1^2}{w^2}$	$s_6 = (3 \frac{s_1^2}{w^2} - c_1 w^2)^2$	1 <i>s</i> e
$a_1 = (s_4 - s_1 - s_2)/2$	$a_2 = -12s_5 + s_6$	$m_1 = V_1 T_1$	1 <i>m</i> e
$m_2 = -8a_1c_1$	$m_3 = (-2m_1(3s_1 + c_1))w$	$f_1 = f^2$	$1m_e + 1s_k$
$X_3 = m_2 - a_2 w$	$Y_3 = m_2 + a_2 w$	$Z_3 = m_3$	
$t_1 = 2a_1(y_P - x_P)$	$t_2 = (c_2 + s_2 w^2)(x_P + y_P)$		$\frac{k}{2}m_1$
$f = f_1 \cdot (t_1 w + t_2 - c_3)$			$\overline{1}m_k$
Total cost : $2m_e + 2s_e + 1m_c + \frac{k}{2}m_1 + 1s_k + 1m_k$			

Table: Parallel execution of doubling step in Miller's function

In the Table we compare the costs for one iteration for Ate on the Selmer curve $S_d : x^3 + y^3 = d$ and on the Weierstrass curve $W : y^2 = x^3 + c^2$ ([1] Costello, Lange, Naehrig, PKC 2010).

Pairings	Doubling	Addition	Mixed Addition
Ate (Q, P)	$4m_e + 7s_e + km_1 +$	$16m_e + 2s_e + km_1 + 1m_k$	$12m_e + 2s_e + km_1$
Weierstrass $(a = 0)[1]$	$1m_k + 1s_k$		$+1m_k$
ate(Q, P)	$3m_e + 5s_e + km_1 +$	$16m_e + km_1 + 1m_k$	$14m_e + km_1 + 1m_k$
This work	$1m_k + 1s_k$		
ate(Q, P)(This work)	$2m_e + 2s_e + \frac{k}{2}m_1 +$	$6m_e + \frac{k}{2}m_1 + 1m_k$	-
Parallelization	$1m_k + 1s_k$	-	

Table: Comparison of costs of one iteration for Ate pairing on Selmer and Weierstrass Elliptic Curves

- Let p be a prime number with $p \equiv 1 \mod 3$. The $E_d : y^2 = x^3 + d^2$ is an ordinary elliptic curve.
- We have the following isomorphism

$$\begin{array}{rcl} \varphi: & E_d & \to & W_d \\ & (x,y) & \mapsto & (-12x, -24\sqrt{-3}y) \end{array}$$

and the curve $W_d: y^2 = x^3 - 432 \cdot 4 \cdot d^2$ is birrationally equivalent to the Selmer curve $S_d: x^3 + y^3 = 2d$

• The construction of pairing friendly curve of the form $E_d: y^2 = x^3 + d^2$ is given by the construction 6.6 of Freemann with $\rho = 1.5$

Emmanuel Fouotsa, Abdoul Aziz Ciss, *Faster Ate Pairing Computation on Selmer's Model of Elliptic Curves.* In *Groups, Complexity, Cryptology*, Vol.8(1) DeGruyter (2016)

|zmir, 07/09/16

Thanks for your attention !

э